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Abstract: To understand the effects of a cortical lesion it is necessary to consider not only the loss of
local neural function, but also the lesion-induced changes in the larger network of endogenous oscilla-
tory interactions in the brain. To investigate how network embedding influences a region’s functional
role, and the consequences of its being damaged, we implement two models of oscillatory cortical
interactions, both of which inherit their coupling architecture from the available anatomical connection
data for macaque cerebral cortex. In the first model, node dynamics are governed by Kuramoto phase
oscillator equations, and we investigate the sequence in which areas entrain one another in the transi-
tion to global synchrony. In the second model, node dynamics are governed by a more realistic neural
mass model, and we assess long-run inter-regional interactions using a measure of directed information
flow. Highly connected parietal and frontal areas are found to synchronize most rapidly, more so than
equally highly connected visual and somatosensory areas, and this difference can be explained in terms
of the network’s clustered architecture. For both models, lesion effects extend beyond the immediate
neighbors of the lesioned site, and the amplitude and dispersal of nonlocal effects are again influenced
by cluster patterns in the network. Although the consequences of in vivo lesions will always depend
on circuitry local to the damaged site, we conclude that lesions of parietal regions (especially areas 5
and 7a) and frontal regions (especially areas 46 and FEF) have the greatest potential to disrupt the inte-
grative aspects of neocortical function. Hum Brain Mapp 29:802–809, 2008. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Observations of the functional consequences of cerebral
lesions continue to be invaluable to the project of human
brain mapping [Finger, 1994; Moses and Stiles, 2002]. Struc-
tural damage can produce behavioral deficits not only
through the disruption of neural circuits local to the lesion
site, but also by disrupting information flow along larger-
scale pathways or by unbalancing competitive inter-regional

interactions [Jackson, 1884; Sprague, 1966; Lomber and
Payne, 1996; Young et al., 2000]. In this article we aim to
characterize these nonlocal effects of local lesions. Our
method is to implement simplified models of macaque cere-
bral cortical dynamics and then to track the consequences of
the removal of individual brain regions from the models.
Previously [Sporns et al., 2007] we examined the effects

of regional lesions on the anatomical connection structure
of cat and macaque cortices. Lesions of highly connected
and central nodes (i.e. ‘‘hub’’ nodes) within these anatomi-
cal networks were found to have the largest effects on net-
work structure. Since macaque cortex can naturally be
decomposed into just two clusters (see Fig. 1A) we were
also able, following Bassett et al. [2006], to separately ana-
lyze the lesions of two distinct types of hubs, where hub
type is determined in relation to the cluster structure of
the network. Hubs of the first type (‘‘provincial’’ hubs) are
defined by their tendency to link nodes within a single
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network cluster, while hubs of the second type (‘‘con-
nector’’ hubs) tend to link nodes in different clusters. We
found that lesioning provincial hubs (such as Area V4)
produced the largest decreases in the small world index of
the cortical network, whereas lesioning connector hubs
(such as Area 46 and the FEF) produced the largest
increases in the small world index. The small world index
[Humphries, 2006] characterizes the balance between local
and global connectivity in a network. The fact that lesions
of highly connected nodes can have such contrary effects
on this connection balance reinforces the idea that lesion
effects depend on the global network embedding.
In an attempt to move beyond these purely structural

analyses, and to make contact with explicitly functional
questions, we now extend our investigation by implement-
ing two simple oscillator models of cortico-cortical interac-
tion. The models have identical coupling structure (derived
from macaque anatomical data, Fig. 1A) but they employ
different node dynamics. In the first model, the network
nodes follow classical phase oscillator equations [Kuramoto,
1975], while in the second they are governed by neural mass
equations [Breakspear et al., 2003; Honey et al., 2007]. This
investigation forms a part of a more general program

[e.g. Arenas et al., 2006; Timme, 2006; Zhao et al., 2005]
aiming to characterize the relationship between the static
properties (e.g. coupling topology) and the dynamic
properties (e.g. synchrony, stability) of systems of coupled
oscillators. Since isolated oscillators exhibit a wide range of
behaviors and since coupling architectures (especially when
asymmetric) can influence global dynamics unpredictably
[Timme, 2006], an entirely general description of this
structure-function relationship is unlikely to be forthcoming.
Rapid dissolution and restoration of synchrony is a hall-

mark of processes such as selective attention and motor
planning [Engel et al., 2001; Varela et al., 2001] and cogni-
tive and motor integrative pathologies are associated with
abnormal patterns of synchrony [Schnitzler and Gross,
2005; Spencer et al., 2003]. Our first investigation, using the
abstract Kuramoto phase oscillator model, is therefore
aimed at understanding how rapidly, and in which regional
order, the cortical network will synchronize from a ran-
domly perturbed initial state. The Kuramoto model we
implement will always evolve towards a globally synchron-
ized state, i.e. a state in which the phases of all interacting
regions are equal. Following [Arenas et al., 2006], we repeat-
edly perturb the system away from its stable synchronized

Figure 1.

(A) Interregional connection data for the macaque monkey. A

black square in the i-th row and j-th column indicates the pres-

ence of a confirmed directed anatomical link from area i to area

j, while a white square indicates the absence of a confirmed con-

nection. Cluster membership is indicated at the bottom of the

plot, with clusters derived using the spectral community detec-

tion algorithm as described in [Sporns et al., 2007]. (B) A single

example run of the Kuramoto model as it evolves towards a

globally synchronous state. Columns correspond to time points

(arbitrary units) and rows correspond to areas (nodes) shown in

the same ordering as for the connection matrix in panel A. The

gray scale represents the phase (in radians) of each oscillator at

a point in time. The time, STi, at which each node synchronizes,

is marked with a white dot. (C) A single example of the neural

mass dynamics, illustrating the process of intermittent synchroni-

zation. Columns correspond to time points (dimensionless) and

rows correspond to areas shown in the same ordering as for

the connection matrix. The gray scale represents the mean exci-

tatory membrane potential (dimensionless) of a region at a given

time.
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state and then observe the sequence in which brain regions
entrain one another as the system progresses towards syn-
chrony from different unstable positions (Fig. 1B illustrates
a single stabilization). We then repeat this analysis after
lesioning individual brain regions from the network, and
study the differences in the pattern of mutual entrainment.
Our dependent measure is the stabilization time, STi, which
approximates the time taken for an individual network ele-
ment to phase-lock with its neighbors on a single run.
Changes in the relationships between the STi (aggregated
across many different perturbations) provide a theoretical
snapshot of a typical entrainment sequence.
In our second investigation we examine a neural mass

model that does not globally synchronize, but does exhibit
transient inter-regional phase-locking (Lachaux et al., 1999;
Fig. 1C). Here, the aim is to characterize the effect of lesions
on the patterns of inter-regional influence (i.e. the effective
connectivity) that manifest over 16 min of millisecond-scale
dynamics. These patterns of influence are quantified using
the transfer entropy [Schreiber, 2000], which is an informa-
tion-theoretic metric of the directed influence of one vari-
able over another. Transfer Entropy (TE) is an asymmetric
measure, and can thus discriminate the influence of region
A on region B from the influence of B on A. This model
and metric have previously been successful in relating the
clustered architecture of the macaque anatomical network
to resting state functional connectivity in the same animal
[Honey et al. 2007]. By repeating these earlier analyses on
lesioned networks we now hope to predict lesion-induced
changes in macaque resting state functional connectivity.
We hypothesize that lesions of hub nodes will have the

largest magnitude effects on both the pairwise interaction
strengths (TEij) and node stabilization times (STi), a result
that would be consistent with earlier results obtained from
a spreading activation model [Young et al., 2000]. We fur-
ther hypothesize that lesions of provincial hubs will selec-
tively decrease the strength of intra-cluster interactions
while lesions of connector hubs will have more wide-
spread effects including the weakening of functional inter-
actions across clusters.

METHODS

Connection Data

The macaque cortical connectivity matrix (Fig. 1A) was
generated following the parcellation scheme of [Felleman
and Van Essen, 1991]. Data were manually collated in the
CoCoMac database from published tracing studies accord-
ing to standard procedures and were then algorithmically
transformed into the Felleman and Van Essen map using
coordinate-independent mapping [Kötter, 2004; Stephan
et al., 2001]. Following resolution of redundant and incon-
sistent results a binary connection matrix with N 5 47 re-
gional nodes and K 5 505 inter-regional connections was
generated. Further details on connection data and graph
theoretic terminology are available in [Honey et al., 2007].

Kuramoto Model

Each node in this classic noiseless oscillator model is
described by a single phase variable ui. Nodes oscillate at
an intrinsic frequency xi and shift attractively towards the
mean phase of their neighbors. If we denote by ki the num-
ber of edges incoming to the i-th node, we can define the
normalized adjacency matrix A(i,j) of the cortical graph G,
such that A(i,j) is equal to J/ki if there is an arc from node
j to node i, and 0 otherwise. The row sums of the matrix A

are thus all equal to the coupling constant J, which was set
to 10. The first-order nonlinear differential equation gov-
erning the i-th phase oscillator is then:

d

dt
ui½ � ¼ xi þ

X

j

Aij sinðuj � uiÞ:

We emphasize that, since xi was fixed at unity, this
model always evolves towards a globally synchronized
state (Fig. 1B). Under each lesion condition, the model was
simulated 1,000 times for 10 time units, with the initial
phases of each oscillator drawn uniformly at random from
the range [0-2p]. The coupled differential equations were
numerically integrated using a standard 4th-order Runge-
Kutta method as implemented in MATLAB R2007a.

Neural Mass Model

The neural mass equations, based on [Morris and Lecar,
1981] and [Larter et al., 1999] and studied in detail in
[Breakspear et al., 2003], model the behavior of local
ensembles of neurons. The state of each neural mass is
represented by three variables: the first is the mean mem-
brane potential of pyramidal cells (show as a function of
time in Fig. 1C); the second represents the mean mem-
brane potential of inhibitory interneurons; the third and
final variable represents the average number of ‘‘open’’ po-
tassium ion channels. The mean cell membrane potential
of the pyramidal cells is governed by the conductance of
sodium, potassium and calcium ions through both voltage-
and ligand-gated membrane channels. The firing of these
cell populations feeds back onto the ensemble through
synaptic coupling to open ligand-gated channels and raise
or lower the membrane potential accordingly. Inhibitory
and excitatory interactions are modeled within the individ-
ual neural masses, which behave, in the current parameter
regime, as chaotic oscillators. Connections between masses
(i.e. the inter-regional connections) are excitatory. The
model is described in much greater detail in [Breakspear
et al., 2003] and parameters for the present study were
unchanged from [Honey et al., 2007].

Stabilization Time

The stabilization time, STi, which we employ here to char-
acterize the transition to synchrony in the Kuramoto dynam-
ics, is defined as the smallest time t such that the absolute
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angular acceleration falls below a threshold value e 5 0.02
and remains below it for at least 5 time units, i.e.
STi ¼ minftjð8l 2 ½0; 5�Þð€/ðtþ lÞ < eÞg. Since the time to sta-
bilization exhibits more variance across trials (and across
lesions) than the relative ordering of stabilization times, we
also assess lesion effects by examining the differences in pat-
terns of stabilization rank, with lower ranks assigned to the
most rapidly stabilizing nodes and highest ranks to the
nodes that stabilize most slowly on a given trial.

Transfer Entropy

Transfer Entropy is an information theoretic measure
introduced by Schreiber [2000], which measures the
amount by which conditioning on the present value of
one variable reduces the entropy rate of another. Given
time-series x(t) and y(t) for two brain regions, we first
resample the data on all variables to follow a normal dis-
tribution with zero mean and unit variance. Resampling is
performed in the following way: given M raw data values
x1, x2, . . . , xM, we generate M random samples r1, r2, . . . rM,
from a standard normal distribution. We then replace the
smallest raw data value with the smallest randomly
sampled value, the second-smallest raw data value with
the second-smallest randomly sampled value, and so on
until all raw data values are replaced. This results in a set
of M resampled data values which are distributed accord-
ing to a standard normal distribution.
We then partition the range of the resampled x(t) and

y(t) into 32 regions (or states) and assign each variable’s
value at each point in time to an individual partition. This
process produces discrete random variables Xn and Yn

which track the state of our neural masses across time,
and we can now apply information theoretic measures to
these state variables in order to quantify the predictive
relationship between them. The entropy rate of the process
x(t) is the average amount of uncertainty about the future
state of x(t), conditional on its current state. The entropy
rate, hX, can be written as the expectation of
� log½pðXnþ1jXnÞ�: The ‘‘y-conditional entropy rate’’ of x(t)
is the average amount of uncertainty about the future state
of x(t), conditional on its current state and on the current
state of y(t). This quantity, hX|Y, can be written as the ex-
pectation of � log½pðXnþ1jXn;YnÞ�: Transfer entropy is then
defined as the difference between hX and hX|Y. In other
words, transfer entropy measures the extent to which our
uncertainty about the future state of x(t) is reduced by
knowledge of the present state of y(t), given that we
already knew the present state of x(t). Transfer entropy is
written

TY!X ¼
X

pðXnþ1;Xn;YnÞ log
pðXnþ1jXn;YnÞ
pðXnþ1jXnÞ

a quantity which we calculated directly from data histo-
grams. Transfer Entropy is bounded below by zero and
above by the entropy rate, hX, of the target process X. TE

values were averaged across 10 long runs of the model for
each lesion condition, with each 16-min run comprising 4
nonoverlapping segments of 4 min (240,000 time steps,
each interpreted as being of 1 ms duration). In order to
compensate for sampling error, we subtracted from all TE
values a ‘‘baseline TE.’’ The baseline TE was calculated by
taking the mean value of TE evaluated between all time
series pairs, but with one time-series shifted by 5,000 time
steps. This baseline subtraction had negligible effect on the
pattern of results we report here.

RESULTS

The Kuramoto Model

We are interested to understand how network structure
affects the sequence in which brain regions synchronize
from a random initial state. Node degree is a simple but
diagnostic estimator of the structural importance of a node
within a network. It is not obvious a priori whether high
degree nodes should stabilize most slowly (since they
receive a large number of competing influences on their
state) or whether they should stabilize most quickly (since
high-degree nodes average their inputs and then widely
broadcast this average, possibly providing an anchor for
rapid local synchronization). We find, as illustrated in Figure
2A, that node degree and the median rank-order of stabiliza-
tion are robustly anticorrelated (Spearman’s q 5 20.66, P <
1026), i.e. high-degree nodes stabilize earlier and low-degree
nodes stabilize later. It is also clear from Figure 2A that there
is an exception to this pattern: area V4, which has the sec-
ond highest degree of all nodes, stabilizes more slowly than
half the nodes in the network. This functional distinction
may be a result of the fact that V4 is the only high-degree
node that clearly classifies as a provincial hub [Sporns et al.,
2007]; all other high-degree nodes are connectors.
The median rank-order of stabilization times inform us

whether a particular node will synchronize earlier or later
than others, but it does not inform us about the inter-node
influences that are felt within runs. To assess inter-node
influences, we assigned a stabilization rank to every node
on every run and calculated rank correlation coefficients
between all pairs of nodes across all runs (Fig. 2B).
Consistent with previous results [ Honey et al., 2007;
Zemanova et al., 2006; Zhou et al., 2006] the patterns of
functional influence tend to recapitulate the structural con-
nection patterns: the stabilization ranks of regions are cor-
related within clusters and anticorrelated across clusters.
This suggests that the two major structural clusters (visuo-
temporal and somatomotor) stabilize locally and then
engage in a competitive interaction (via the connector
hubs) to determine the globally synchronous phase, with
the losing cluster experiencing a later destabilization.
Having assessed the functional consequences of network

structure in intact networks, we now move on to examine
the effects of lesions. To assess the effect of regional
lesions on the Kuramoto dynamics, we calculate the differ-
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ence in median stabilization ranks (Fig. 3A) and in median
stabilization times (Fig. 3B) resulting from each lesion. We
find that lesions within a cluster tend to delay the stabili-
zation of nodes within that cluster and to speed the stabili-
zation of those outside the cluster. Area 5, a posterior pari-

etal region believed to be involved in visual, somatosen-
sory and motor integration [Breveglieri et al., 2007], has
the largest impact on both rank and time; its removal dras-
tically slows somatosensory and speeds visuo-temporal
synchronization (Fig. 3A,B).

Figure 2.

(A) Scatterplot of median stabilization rank against degree (sum

of in- and out-degrees). (B) A map of the correlations in stabili-

zation rank across runs, with areas arranged in the same order-

ing as in Figure 1A. Warmer values indicate that a region pair

will have correlated stabilization ranks; cooler values indicate

that regions will have anti-correlated stabilization ranks. There is

significant agreement of these stabilization rank correlations with

either TE patterns or BOLD cross-correlations obtained from a

previous model of macaque cortex [Honey et al., 2007].

Figure 3.

Effects on the median stabilization rank (A) and on the median

stabilization time (B) produced by the lesioning of individual

brain regions. Each column shows the pattern of differences in

stabilization time (A) and rank (B) resulting from the lesion of a

single area, with rows and columns arranged in the same order-

ing as Figure 1A. Individual cell colors correspond to the differ-

ence in rank or time between the lesioned and unlesioned net-

works. Brain areas indicated at the bottom are further analyzed

in Figure 4.

r Honey and Sporns r

r 806 r



Neural Mass Model

As in our previous work with a neural mass model
[Honey et al., 2007] we found that patterns of functional
connectivity in intact networks roughly recapitulated the
underlying structural connection map. Because of the com-
putational demands of the neural mass model, we were
unable to examine the consequences of lesioning all nodes,
and so we restricted our attention to 8 network regions: 4
connector hubs (areas 7a, FEF, 46, and 5) located in the
frontal and parietal lobes, 2 provincial hubs (V4 and SII)
and two primary sensory and motor areas (V1 and area 4).
For each lesioned area we calculate the difference of all

Transfer Entropy (TE) values between the lesioned and
unlesioned dynamics (Fig. 4A). Most lesion-induced
increases or decreases in pairwise TE were found to be
less than 10% of the original TE value for that pair, while
some exceeded 25%. Although our sample of lesioned
nodes is small the average magnitude of TE reductions
produced by lesions of high-degree nodes appears to be
larger than those produced by lesions of low degree nodes.
We also observed a difference between connector hubs
(areas 7a, FEF, 46, and 5) and provincial hubs (areas V4
and SII): Lesions of provincial hubs have larger cluster-
local effects while lesions of connector hubs exhibit a more
distributed pattern.
Lesion-induced changes in TE extend well beyond the

immediate neighbors of (i.e. the recipients of direct connec-
tions from) the lesioned node. To quantify this statement,

we compared probability histograms of the lesion-induced
TE difference on (a) edges between neighbors of the
lesioned node and (b) edges between non-neighbors of the
lesioned node. We found, as shown in Figure 4B, that
the average effect for both neighbors and non-neighbors of
the lesioned node is a decrease in functional connectivity.
Although the effects on TE between neighbors of the
lesioned area are larger than the effects on TE between
non-neighbors of the lesioned area (two-sided Wilcoxon
Rank sum tests, P < 10210 for all lesions) the distributions
of effect sizes nevertheless exhibit substantial overlap (data
not shown). Lesions of connector hubs resulted in greater
nonlocal TE effects than lesions of provincial nubs, and
lesions of primary visual or primary motor cortex had the
smallest effects overall.
The pattern of results we report based on TE are very

similar to those obtained when using mutual information
(MI) as the dependent measure (data not shown, methods
as in [Honey et al., 2007]).

DISCUSSION

Using two different dynamical cortical models we have
investigated the relationship between inter-regional influ-
ences and inter-regional coupling structure. We further
examine how cortical lesion consequences change as a
function of the network embedding of the lesioned region.
As expected, lesions of high-degree nodes produced the

Figure 4.

For the 8 areas analyzed, we show the distribution of lesion-

induced effects on TE, displayed as the difference in the interac-

tion strength maps between the lesioned and unlesioned case

(A). Lesions predominantly result in decreased TE, with a

decrease of 0.02 bits corresponding to approximately 25% of

baseline. Panel (B) shows the sizes of the average TE effects for

links between neighbors (left) and links between non-neighbors

(right) of the lesioned node. Disconnected nodes were excluded

from this analysis.
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largest and most widespread effects on cortico-cortical
interactions in both models we tested. However, the clus-
tering (or community) architecture of the cortex was found
to be a significant factor in predicting lesion effects, since
the removal of cluster-central nodes tended to produce
effects confined to the cluster, even for high-degree nodes
such as area V4.
Within the context of the abstract Kuramoto oscillator

model we found that connector hubs, which are located
mostly in parietal and frontal regions of the brain, were
the first to (re)stabilize their phase from a random phase
perturbation or initialization. This is consistent with their
posited roles as the facilitators of synchrony between distal
regions of cortex [Corbetta and Shulman, 2002; Engel
et al., 2001].
Within the context of the neural mass model, we

observed, once again, that lesion-induced TE changes were
influenced by the cluster structure of the network. Remov-
ing provincial hubs had stronger effects within the hub’s
own cluster while the removal of connector hubs produced
more widely and evenly spread effects. We emphasize,
however, that despite these differences, and consistent
with the findings of [Young et al., 2000], substantial nonlo-
cal influence was observed for all lesions.
The most significant discrepancy between the simple

models we explore here and real neural circuits is that
such circuits can endogenously generate oscillations within
a single or a few frequency bands, each of which may act
as an independent channel of communication and coordi-
nation [see e.g. Buszáki and Draguhn, 2004; Börgers et al.,
2005]. Future models should take account of these pre-
ferred oscillatory frequencies, their potential for signal gat-
ing, and their dependence on levels of exogenous driving.
Another limitation of the present study is that the anatom-
ical data for macaque are incomplete, especially in the ab-
sence of all thalamic and many frontal neocortical regions.
Whole-brain diffusion spectrum imaging in humans [Hag-
mann et al., 2007; Wedeen et al., 2005] is already providing
the necessary connection data for us to extend the present
investigation to the human brain.
Despite the fact that our two models show broadly simi-

lar patterns of results, they also show some important dif-
ferences. In particular, we note that the lesion-induced
changes in functional connections in the Kuramoto model
(Fig. 2B) do not correspond on an edge-by-edge basis to
the lesion-induced changes observed in the neural mass
model (data not shown). This is an indication that infer-
ence from coupling structure to functional properties may
not always be possible, since the relation between the two
does depend on details of the node dynamics.
Our function of interest here is the ongoing process of

inter-regional information integration, and the relevant dy-
namical feature is the tendency to synchronize. Inter-re-
gional integration is crucial not only for the performance
of demanding psychological tasks, but for almost all cogni-
tive function, and so it is unsurprising that integrative dis-
orders such as Alzheimer’s disease and schizophrenia are

accompanied by changes in functional connectivity that
are present even in the resting state [Bluhm et al., 2007;
Rombouts et al., 2005].
The present data suggest that connector hubs will most

rapidly synchronize following an external perturbation and
that lesions of these regions have the most widespread
effects. We therefore suggest that parietal lesions (especially
of areas 5 and 7a) and frontal lesions (especially of areas 46
and FEF) are most likely to disrupt the system-wide integra-
tive processes that require rapid de- and resynchronization
of endogenous brain oscillatory networks.
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Zhou C, Zemanová L, Zamora G, Hilgetag C-C, Kurths J (2006):
Hierarchical organization unveiled by functional connectivity
in complex brain networks. Phys Rev Lett 97:238103.

r Dynamical Consequences of Cortical Lesions r

r 809 r


