
M

P
V
a

b

c

d

e

f

a

A
R
R
A

K
D
T
N
C
V
R
D

1

a
H
a
u
l
c
o
a
i
t

6
s
(
h
F
o

4

0
d

Journal of Neuroscience Methods 194 (2010) 34–45

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journa l homepage: www.e lsev ier .com/ locate / jneumeth

R connectomics: Principles and challenges

atric Hagmanna,b,c,∗, Leila Cammounb, Xavier Gigandetb, Stephan Gerhardb, P. Ellen Grantc,d,
an Wedeend, Reto Meuli a, Jean-Philippe Thiranb, Christopher J. Honeye, Olaf Sporns f

Department of Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Switzerland
Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Division of Newborn Medicine, Department of Medicine and Department of Radiology, Children’s Hospital Boston, USA
Athinoula A. Martinos Center for Biomedical Imaging, Member of the Affiliated Faculty of the Harvard-MIT Division of Health Sciences and Technology, Charlestown, MA, USA
Department of Psychology, Green Hall, Princeton University, Princeton, NJ, USA
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

r t i c l e i n f o

rticle history:
eceived 31 August 2009
eceived in revised form 2 January 2010
ccepted 13 January 2010

a b s t r a c t

MR connectomics is an emerging framework in neuro-science that combines diffusion MRI and whole
brain tractography methodologies with the analytical tools of network science. In the present work we
review the current methods enabling structural connectivity mapping with MRI and show how such data
can be used to infer new information of both brain structure and function. We also list the technical chal-
lenges that should be addressed in the future to achieve high-resolution maps of structural connectivity.
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From the resulting tremendous amount of data that is going to be accumulated soon, we discuss what
new challenges must be tackled in terms of methods for advanced network analysis and visualization, as
well data organization and distribution. This new framework is well suited to investigate key questions
on brain complexity and we try to foresee what fields will most benefit from these approaches.

© 2010 Elsevier B.V. All rights reserved.

esting-state fMRI
atabase

. Introduction

We entered the twenty first century with the capacity to map
ny person’s individual genetic profile (Gresham et al., 2008;
utchison, 2007). This genomic information serves, at individual
nd at population levels, as a structural scaffold that helps us
nderstanding, characterizing and predicting normal and patho-

ogic function at multiple levels like the transcriptional, proteomic,
ellular and systemic level (Mo and Palsson, 2009). The emergence
f systems biology at all these levels has directly emerged from our
bility to map not only the individual genes but also the complex
nteractions between them as well as the highly variable post-
ranscription modifications.

The development of chemical tracing technologies over the past
0 years has provided us with a relatively good view of the meso-
copic architecture of non-human white matter fiber pathways

Schmahmann and Pandya, 2006). However, progress has been
ampered by many technological difficulties and low throughput.
urthermore variability is difficult to assess since only a limited set
f connections can be traced per specimen. Therefore, even for the
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brain of the heavily studied macaque, our connectional map has
not yet attained a macroscopic completeness. Surveying this state
of affairs about 15 years ago, Crick and Jones called for the develop-
ment of radically new techniques to investigate brain connectivity
(Crick and Jones, 1993).

Today, Crick’s and Jones’ call seems to be receiving a rather
strong echo that in several respects is summarized in this special
edition. In addition to the important advances achieved in chemical
tracing methods major initiatives are appearing to use information
technology and computer science in order to collect data at high-
throughput and to organize data in large databases (Bohland et al.,
2009; Stephan et al., 2001). This is not only the case for chemical
tracing technology but also for human in vivo imaging with the
advent of diffusion MRI technology that has made tremendous
progress over the last 10 years. As we will see, diffusion imaging
has opened the door for high-throughput individual non-invasive
in vivo whole brain structural connectivity mapping of the human
brain by the inference of axonal fiber pathways from local water
diffusion.

The perspective of collecting large amounts of connectional

data combined with the understanding that the fundamental
properties of the brain result from large-scale network topology
has led two researchers, at that time independent, to realize the
prime importance of this emerging technology, and to conceptu-
alize in 2005 the notion of “connectome” and its related science

dx.doi.org/10.1016/j.jneumeth.2010.01.014
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:Patric.hagmann@epfl.ch
dx.doi.org/10.1016/j.jneumeth.2010.01.014


urosci

“
a
t
a
(
p
c
I
b
T
s
t
b
t
i

p
t
t
a
m
w
f
g
o
q

2

2

2

r
p
1
b
r
1
o
1
w
t
a
D
a
u
f
(
a
“
2

e
m
1
p
c
(
e
t
m
s
l

m

P. Hagmann et al. / Journal of Ne

connectomics” (Hagmann, 2005; Sporns et al., 2005). In complete
nalogy to the word “genome”, this new “-ome” emphasizes to
he notion that the brain is one large and unique structural entity:

network made of neural connections (edges) and neural units
nodes). Depending on the scale, connections are axonal fiber
athways or individual axons and dendrites, and neural units are
ortical functional units, cortical columns, or individual neurons.
t also implies that the huge diversity of complex behaviors and
rain properties is shaped by its global connectional organization.
he word “connectomics” emphasizes that there is a new field of
cience and many technological challenges to be tackled around
he “connectome”, from mapping the nodes and edges in the
rain at an individual and population level, developing the tools
o analyze its organization and structure to understanding the
nterdependence with several levels of brain function.

In the present review we will first sketch the methods for map-
ing the connectome step by step using diffusion MRI. At each of
hese steps we will describe the state of the art and the remaining
echnical challenges. The following section is entirely dedicated to
discussion on the validation of diffusion MRI derived connectivity
apping, a particularly important and difficult problem. Then we
ill discuss the possible methods for analyzing brain structure and

unction using the connectome framework. Finally we will try to
lance towards the future and imagine the tools that will be devel-
ped to serve the connectome project and what neuro-scientific
uestions may potentially benefit most form connectomics.

. Mapping the connectome with MRI

.1. Diffusion imaging

.1.1. Past and current state of the art
Diffusion-weighted magnetic resonance imaging (MRI),

eceived strong attention for the first time in the early 90s as it
roved to be a sensitive biomarker for acute stroke (Moseley et al.,
990). The second reason diffusion imaging came to attention, was
ecause it was observed that not only does white matter exhibit
eliable anisotropic properties (Basser et al., 1994; Douek et al.,
991) but that it is indeed possible to infer fiber tract trajectories
n the basis of these patterns (Conturo et al., 1999; Mori et al.,
999; Wedeen, 1996). Diffusion Tensor Imaging and tractography
as born. However relatively quickly people realized that major

ract reconstruction artifacts were difficult to overcome (Tuch et
l., 2002; Wiegell et al., 2000). These were related to the fact that
TI was unable to resolve multiple fiber bundle orientation inside
n imaging voxel, and these crossing configurations appeared to be
biquitous in the brain (Behrens et al., 2007). While the theoretical
oundations of diffusion MRI have come to be better understood
Wedeen et al., 2005), over the years, increasingly complex data
cquisition schemes have been developed that are able to handle
the fiber-crossing problem” (Tournier et al., 2004; Tuch et al.,
003; Wedeen et al., 2000, 2005).

Water molecules inside tissues, at body or room temperature,
xperience random motion due to thermal energy; this is com-
only referred as Brownian motion (Einstein, 1956; Le Bihan,

995). Over a limited volume, i.e. a voxel of a few mm3, the dis-
lacement of such a population of water molecules can be described
onveniently as a displacement probability density function (PDF)
Callaghan, 1991). Obviously, the shape of the PDF is strongly influ-
nced by the local environment (Fig. 1); i.e. the orientation of
he local barriers created by cellular membranes, myelin sheaths,
acromolecules, and so forth are directly reflected in the PDF. The
hape of the PDF is also different in every position of the brain since
ocal tissue architecture is location dependent (Beaulieu, 2002).

Diffusion imaging exploits the fact that motion of water
olecules inside tissues can be magnetically labeled by the appli-
ence Methods 194 (2010) 34–45 35

cation of a strong bipolar gradient during image acquisition, for
review see Le Bihan (2003). In fact, the diffusion MRI experiment
produces a signal that is the Fourier transform of the diffusion PDF
at every imaged brain location. Through this fundamental relation-
ship between MR signal and PDF, it is possible to recover for every
imaging voxel the local diffusion PDF, provided that the MR sig-
nal is appropriately sampled (Callaghan, 1991; Cory and Garroway,
1990; Wedeen et al., 2005).

This apparent simplicity in concept has conflicted and still con-
flicts with the technical requirements of such imaging. Indeed the
direct implementation of the above-described theory is material-
ized by Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2000,
2005), a technique that is characterized by the acquisition of a
very large number of images applying strong motion sensitizing
magnetic gradients in multiple directions. This not only results
in lengthy acquisition times but also requires high performance
hardware, typically 3 Tesla systems, powerful magnetic gradients
and multichannel head coils. For these reasons, DSI is only now
starting to play a significant role in brain imaging as more centers
are equipped with high-end magnets and as commercially avail-
able pulse sequences are being distributed (Krueger, 2008). This
is the reason why DTI, a much simpler scheme, is still largely in
use. Therefore most connectional studies up to now have been
conducted with DTI schemes despite its recognized limitations.
Somewhat in-between solutions, known as single-shell High Angu-
lar Resolution Diffusion Imaging (HARDI) techniques became quite
popular since through some assumptions they were able to over-
come the “fiber-crossing problem” without having to compromise
to much scan time and without major hardware requirements
(Jansons and Alexander, 2003; Seunarine and Alexander, 2009;
Tournier et al., 2004; Tuch et al., 2002, 2003). In our experience,
there is a steady increase in performance from DTI to HARDI
techniques and finally DSI when performed with the appropriate
hardware, pulse sequence and post-processing (Gigandet, 2009;
Wedeen et al., 2008), but this is not a broadly accepted fact. How-
ever all the techniques provide satisfying result to a given point
only, and reconstruction errors are identifiable with every method.

2.1.2. Challenges and perspectives
From post mortem studies in macaque, we know that we are

likely, with improved technology, to resolve structures that cannot
be resolved yet with current in vivo scanning methods. Typically
we know from such experiments that stronger diffusion sensitizing
gradients than the ones available on current human scanners need
to be developed and will require significant engineering effort. The
reason for striving for stronger gradients is twofold, (a) it permits
sampling of images at high b-values with shorter diffusion encod-
ing times, which will improve angular resolution and (b) a shorter
diffusion sensitizing gradient duration helps to decrease the echo
time, which further boosts the SNR. Multichannel coil technology
with at least 32 (and up to 128) channels will not only help to
increase SNR but also reduce the acquisition time when combined
with fast imaging methods such as parallel imaging and multiple
slice encoding pulse sequences (Reese et al., 2009; Wiggins et
al., 2009). This will ultimately allow increased spatial resolution
and decrease the susceptibility artifacts inherent to echo planar
imaging. The combination of these developments will be critical if
we are to bring connectivity mapping to the next level, ultimately
moving from the macro- to the meso-scale connectome resolution.

2.2. MR tractography
2.2.1. Past and current state of the art
Tractography is an algorithmic method for inferring the trajecto-

ries of fiber bundles through the white matter on the basis of diffu-
sion MRI data. We have seen in the previous section how a diffusion
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Fig. 1. Diffusion within a single voxel. (a) Diagram shows the 3D diffusion probability density function in a voxel that contains spherical cells or randomly oriented tubular
structures (axons) that intersect. This 3D displacement distribution, which is roughly bell shaped, results in a symmetric image, as there is no preferential direction of
diffusion. The distribution is similar to that in unrestricted diffusion but narrower because there are barriers that hinder molecular displacement. The color bar at the far
right, indicates that low probability is coded in red, and high probability in blue. The center of the image (origin of the r vector) codes for the proportion of molecules that
were not displaced during the diffusion time interval. (b) Diagram shows the diffusion probability density function within a voxel in which all the axons are aligned in the
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ame direction. The displacement distribution is cigar shaped and aligned with the
ontains two populations of fibers intersecting at an angle of 90◦ . The molecular dis
t al., 2006).

DF can be measured in every voxel of white matter. From such PDF,
irections of preferred or maximal diffusion can be extracted, i.e.
irections in which the molecular displacement of water is faster
hat in others. Each voxel may exhibit one or several such princi-
le diffusion directions. Each principal direction is mostly tangent

ocally to a fiber bundle. Therefore principal directions of diffu-

ion are coherently aligned along white matter fiber tracts defining
oherence paths of maximal diffusion. A tractography algorithm
s a tool to capture this coherence and to map it as a curve in
hree-dimensional space, hence representing a fiber tract trajectory
Hagmann, 2005; Hagmann et al., 2007; Wedeen et al., 2008).
s. (c) Diagram shows the diffusion probability density function within a voxel that
ment distribution produces a cross-shape. Adapted from Radiographics (Hagmann

Tractography has captured the imagination of many computer
scientists, and all sorts of possible solutions to tackle the problem
have been investigated. To provide an overview for the lay reader,
we will review the principle of the simplest and most straightfor-
ward algorithm, local path integration approach commonly known
as “streamline” tractography.
In the setting of DTI, the dataset of principal diffusion directions
can be considered as a three-dimensional vector field, similar to a
weather wind map. The theoretical trajectory of a particle in such a
wind map, i.e. diffusion map, can be computed by path integration,
basically meaning that from a chosen point the particle follows a
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Table 1
Classification of major tractography algorithms published depending on diffusion imaging and propagation technique.

Tractography method DTI HARDI

Deterministic line propagation
Local path integration along principal
diffusion directions

Wedeen (1996), Conturo et al. (1999), Mori et al. (1999),
Basser et al. (2000).

Hagmann (2005), Hagmann et al. (2007), Wedeen et al. (2008).

Tensor deflection Lazar et al. (2003)

Probabilistic line propagation
Random walk simulation Koch et al. (2002), Hagmann et al. (2003), Parker et al.

(2003).
Parker and Alexander (2005), Perrin et al. (2005).

Bayesian framework Behrens et al. (2003) Behrens et al. (2007).

Energy minimization techniques
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Dijkstra’s algorithm Iturria-Medina et al. (2007)
Fast marching Parker et al. (2002), Staempfli et al. (2

(2007)
Statistical mechanics Poupon et al. (2001), Kreher et al. (20

rajectory always tangent to the local vector; it creates a streamline.
he very first tractography algorithms published were of that kind
Conturo et al., 1999; Mori et al., 1999; Wedeen, 1996), but very
uickly as people started to understand the intrinsic limitation of
TI, they realized that such a simple solution was the source of
ery obvious artifacts. Researchers began to be aware of the “fiber-
rossing problem”. While a part of the scientific community sought
o overcome that problem with new diffusion imaging paradigms,
thers started to develop cleverer tractography methods that could
omehow handle crossings, despite not being effectively mapped
y DTI. This generated a very large diversity of methods, having
ach their advantages and drawbacks. An attempt to classify this
on-exhaustive list of solutions is given in Table 1. These attempts
ere more or less successful since most of the time the price to
ay for a better mapping of fiber-crossing in DTI came with more
ncertainty and fuzziness in the tracking solutions.

.2.2. Challenges and perspectives
With time it seems that single- and multi-shell HARDI

echniques are overtaking DTI-related techniques even those
mploying the most advanced tractography method. With the
dvent of HARDI, the fiber-crossing problem has become more
ractable, and the field has made a significant step forward. Nev-
rtheless spatial and angular resolution issues remain, and the
rossing problem has been shifted into a kiss-crossing problem, as
t appears that diffusion profiles of crossing fiber bundles are not
istinguishable from so-called kissing fibers. Although this con-
guration is likely to be less widespread than a crossing bundle,
ber-kissing situations as well as areas of a mixture of kissing and
rossing do occur in the brain. This problem again led to investi-
ation of different algorithms in the HARDI setting (Behrens et al.,
007; Gigandet, 2009; Hagmann et al., 2007; Parker and Alexander,
005; Perrin et al., 2005; Wedeen et al., 2008). Some groups have
ried to relate some complex diffusion PDF shapes to either crossing
r kissing fiber profiles (Alexander, 2008).

.3. From tracts to networks

.3.1. Past and current state of the art
Understanding the structural basis of functional connectivity

atterns requires a comprehensive map of structural connection of
he human brain (the human connectome (Hagmann, 2005; Sporns
t al., 2005)). We have just seen that advances in diffusion imag-
ng and tractography methods permit the non-invasive mapping of
hite matter cortico-cortical and cortico-subcortical projections at
igh spatial resolution. However the path from mapping fiber bun-
le trajectories to the network representation of the entire brain
onnectivity requires additional non-trivial processing steps. In the
ollowing we briefly survey our approach to the problem.
Jbabdi et al.

No single universally accepted parcellation scheme currently
exists for human brain regions (e.g. areas of the cerebral cortex),
posing a significant challenge to creating a unified resource such
as the connectome. Noteworthy is the fact that in the early days
of genomics the number and boundaries of genes was not clear
either and that actually genomics technology helped to define
them (Fields et al., 1994). In the human cerebral cortex, neurons
are arranged in an unknown number of anatomically distinct
regions and areas, perhaps on the order of 100 or more. It is not
clear whether cyto-architechtonically defined (Brodmann, 1985)
or more functionally defined areas would be ideal. Nor is it clear
either what the optimal scale is for efficient characterization of
brain connectivity. Is it the neuronal, micro-column or the regional
scale (respectively the micro-, meso- or macro-scale) that is most
appropriate?

Since regional delineation is in itself a complex challenge
(Schneider, 2009), we simply chose to partition the cortex into
small homogenous, compact patches, about 1.5 cm2 in surface
area, that are identified according to their gyral coordinates. We
postulated that, across subjects, there should be preservation of
connectional architecture with respect to gyral geometry. We
developed a processing pipeline that is summarized in Fig. 2 and
can be briefly described as follows. From diffusion MRI to a high-
resolution structural connection matrix we adopted a five step
process: (1) DSI and high-resolution T1-weighted MRI acquisition
of the brain, (2) segmentation of white and gray matter, (3) white
matter tractography, (4) segmentation of the cortex into anatom-
ical regions and subdivision into small Regions Of Interest (ROIs)
and (5) network/connection matrix construction by computing the
fiber connections linking any pair of ROIs.

To segment the cortex, we modified a freely available software
(www.freesurfer.org) for partitioning of the cortex into about 1000
homogenous ROIs of about 1.5 cm2, that are in register across sub-
jects such that the nodes of the network, defined by the ROIs,
and the connections linking them can be compared and averaged
between subjects. Other groups have used similar strategies to
partition the cortex using different matching criteria between sub-
jects, using volumetric registration of atlases, like MNI, resulting
in smaller networks (Gong et al., 2009; Iturria-Medina et al., 2007;
Li et al., 2009). In our early works we used Tailarach coordinates
(Hagmann, 2005) or arbitrary subdivisions (Hagmann et al., 2007).
In our experience, homogeneity in size and shape of ROIs as well
precise anatomical localization is critical in many respects for quan-
titative analysis of weighted networks.
2.3.2. Challenges and perspectives
Important developments are still needed in this processing step

of transforming tractographic data into an abstract connectional
network. Choosing the right criteria to define an identical node

http://www.freesurfer.org/
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Fig. 2. Extraction of a whole brain structural connectivity network. (1) High-resolution T1 weighted and diffusion spectrum MRI (DSI) is acquired. DSI is represented with a
zoom on the axial slice of the reconstructed diffusion map, showing an orientation distribution function at each position represented by a deformed sphere whose radius codes
for diffusion intensity. Blue codes for the head-feet, red for left-right, and green for anterior-posterior orientations. (2) White and gray matter segmentation is performed
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esulting in 998 ROIs. (4) Whole brain tractography is performed providing an estim
re combined with result of step (4) in order to compute the connection weight betw
he entire brain. Adapted from PLoS Biology (Hagmann et al., 2008).

etween subjects is the first major challenge in our opinion. Should
odes (i.e. ROIs) be labeled according to their precise topological
osition on the cortical surface (as we have chosen to do), or should
hey be labeled according to an elaborate fMRI-based functional
ocalization protocol? Should connectivity itself be used to label a
ode, using preservation of connectional profile as a criterion or
hould we use a combination of those techniques? At this point
he question remains open. Second, what definition of connectivity
s going to be most useful? Is the computational connection den-
ity (some sort of normalized tractography fiber counting scheme)
ruly reflective of the underling number of axonal connection
er unit surface? What physiological property does mean diffu-
ivity or fractional anisotropy along a tract reflect, and which
iffusion-derived parameter best reflects inter-regional connective
fficacy?

.4. Validation of MR tractography and connectivity maps
The diversity of diffusion imaging technology and tractography
ethods naturally brings us to the question of how to benchmark

hese tools and how to quantitatively assess their performances?
he fundamental difference between brain connectional anatomy
created and then (3b) individually subdivided into small regions of interest (ROIs)
f axonal trajectories across the entire white matter. (5) ROIs identified in step (3b)
each pair of ROIs. The result is a weighted network of structural connectivity across

and the anatomy of the rest of the body is that brain connec-
tivity is largely unknown and that we have no real definite gold
standard to refer to. Therefore our ability to evaluate the qual-
ity of the tracing just by comparing the shape of reconstructed
tracts with our a-priori knowledge is only limited to a crude anal-
ysis of a dozen major fiber bundles (Hagmann et al., 2003; Mori
et al., 2002). The approach consisting of creating synthetic dif-
fusion models for validation is useful in the development phase
to characterize the behavior of a given algorithm, but in our
view not adequate to predict the performance in biological tissue
(Alexander, 2008; Assaf and Basser, 2005; Hwang et al., 2003; Szafer
et al., 1995). Chemical tracing certainly has an important role to
play in animal models where some species have been explored rel-
atively extensively—though incompletely and not homogenously
(Schmahmann and Pandya, 2006). The macaque is a notable exam-
ple, where extensive tracing literature is available and has even
been collected into a database called CoCoMac (Stephan et al.,

2001). Such data is generated from a very heterogeneous mate-
rial (different individual animals or different species, different
techniques) and therefore its consistency and quantification is
problematic. Nevertheless it is an extremely valuable resource to
compare and validate different techniques.
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Fig. 3. Comparison of macaque cortex structural connections derived by diffusion imaging and tractography. (A) Composite matrix of DSI-derived fiber densities (lower
triangular) and symmetrized anatomical connection matrix (upper triangular) derived from Cocomac data (http://www.cocomac.org/). Fiber densities in the lower triangular
portion of the matrix are displayed on a proportional gray scale (arbitrary units), while Cocomac pathways in the upper triangular matrix are displayed as “known present”
( as we
i and gr
m coinci
A nces to

b
d
t
t
n
i
p
i
w
e
s

q
i
t
d
a

a
1
r
i
w
e
t
i
s

r
f
u
I
f
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n the panels at the top of the figure (lateral and medial views, respectively). Blue

ethods (Honey et al., 2007). (B) Proportions of the total DSI fiber mass that are
dapted from PLoS Biology (Hagmann et al., 2008). (For interpretation of the refere

Our group investigated the relation between a macaque
rain specimen scanned with DSI and the CoCoMac connectional
atabase. An overlay of structural connectivity derived by these
wo methods has been studied and is shown in Fig. 3. We found
hat 78.9% of all DSI fibers were identified in positions where con-
ections had been identified by tract tracing methods and recorded

n Cocomac. A further 15.0% were placed in positions where the
resence or absence of a pathway is currently unknown accord-

ng to CoCoMac. The remaining 6.1% were placed in positions
here connections had been reported to be absent (Hagmann

t al., 2008). The false positive rate was not evaluated in this
tudy.

Using the porcine brain Dyrby et al. (2007) quantitatively and
ualitatively assessed the anatomical validity and reproducibility of

n vitro multi-fiber probabilistic tractography against two invasive
racers. They demonstrated that probabilistic tractography reliably
etected specific pathways and concluded that tractography can be
precise tool in studying anatomical brain connectivity.

In the human brain, chemical tracing data is almost inexistent
nd limited to case reports (Clarke et al., 1999; Di Virgilio et al.,
999; Tardif and Clarke, 2001) and macroscopic dissection is noto-
iously unreliable. On the other hand resting-state fMRI has gained
n acceptance over the last years for the mapping of functional net-

orks (Raichle et al., 2001; Vincent et al., 2007) that must to some
xtent be related to the underlying structural connectivity. It has
he double advantage of being completely unrelated to diffusion
maging and of being measured in the same scan session and in the
ame subject.

Fig. 4A shows a correlation map of the precuneus and poste-

ior cingulate cortex with the rest of the brain in a resting-state
MRI experiment. These postero-medial structures were previously
sed for mapping the default mode network (Raichle et al., 2001).

n Fig. 4B presents a scatter plot of structural connections derived
rom DSI and functional connections derived from fMRI for the pre-
ll as the extent to which the matrix covers the surface of macaque cortex are shown
een represents cortices belonging to the two major clusters identified by spectral

ding with “known present,” “unknown,” and “known absent” Cocomac pathways.
color in this figure legend, the reader is referred to the web version of the article.)

cuneus and the posterior cingulate cortex over 5 subjects and both
hemispheres (Hagmann et al., 2008). The plot indicates that the
strengths of structural connections (SC) as estimated from diffusion
imaging are highly predictive of the strengths of resting state func-
tional connections in the default mode network (rsFC) (r2 = 0.53,
p < 10−10). Scatter plots of structural connections and functional
connections for all anatomical subregions averaged over all five
participants (Fig. 4C) also revealed significant correlations between
their strengths (r2 = 0.62, p < 10−10). Stronger DSI connections are
quantitatively predictive of stronger functional connectivity. The
results from this comparison of structural and functional connec-
tions not only support the validity of the DSI-derived structural
connection patterns but also provides compelling evidence that
functional connectivity is reflective, at least in part, of interac-
tions between distant neuronal populations. However, because
anatomically unconnected edges exhibit a wide range of rsFC val-
ues, it is not possible to reliably infer SC from rsFC using a simple
thresholding procedure. The unreliability of inferring SC from the
presence of high rsFC results from two factors. First, rsFC can
result from mechanisms other than direct SC. These mechanisms
include indirect SC, travelling waves in the cortex, and shared cor-
tical innervation from a common source. Second, the base rate
of direct SC between two randomly selected 1.5 cm2 patches is
very low. This difficulty in inferring SC from rsFC is not just a
reflection of the practical limitations of fMRI: a similar unreli-
ability was also seen in our computational model results – in
which SC provided the exact coupling matrix and there was no
“acquisition noise” (Honey et al., 2009). We note that, although
the relationship between indirect SC and rsFC is weaker than the

relationship between direct SC and rsFC, it is nonetheless highly sig-
nificant. Consistent with the observation of Vincent et al. (2007),
that interhemispheric rsFC between the visual cortices is most
likely subserved by polysynaptic connections, we find in our data
that indirect cortico-cortical SC is an especially strong predictor of

http://www.cocomac.org/
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Fig. 4. Comparison of structural and functional connectivity. (A) Map of functional correlations from resting-state fMRI for a cluster of five seed ROIs located within 10 mm of
the Talairach coordinate [–5 −49 40] (marked by a white circle). Correlations are averaged over the five ROIs and over scanning sessions for all five participants. The plot shows
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lateral and medial view of the left cerebral hemisphere. (B) Scatter plot of struct
nd PC, left and right hemisphere), for all five participants. (C) Scatter plots for stru
ubregions in both hemispheres. Adapted from PLoS Biology (Hagmann et al., 2008

he rsFC between the visual cortices of each hemisphere (Honey et
l., 2009).

Obviously, extensive and large-scale post-mortem macaque and
n vivo human studies are urgently needed in order to appropriately
alidate diffusion MRI tractography and in order to be able to set
lear sensitivity and specificity boundaries for MR tractography.

. Analyzing the connectome

.1. Brain structural network analysis

Once an abstract network has been defined, sophisticated net-
orks analysis can be deployed to determine key aspects of the

rain’s structural organization. These methods have been widely
pplied across multiple areas of science (Strogatz, 2001), includ-
ng networks of interacting proteins, ecosystems, communication
nd transportation, the world wide web, social systems, and finally,
he brain (Bullmore and Sporns, 2009). Most relevant for neuro-
cience and the connectome are networks measures that evaluate
he degree of clustering and modularity (measures of functional
egregation), and of path length and communication efficiency
measures of functional integration). In a seminal study (Watts and
trogatz, 1998) discovered that networks combining high cluster-
ng of local connections and a short path length due to a small

raction of long-range connections were organized as a “small-
orld”. In such networks, any node can be reached from any other
ode in a small number of steps, despite the fact that most nodes

orm tightly coupled local communities. Hence such networks com-
ine functional integration and functional segregation.
nd functional connections of the precuneus and posterior cingulate cortex (PCUN
l and functional connections averaged over all five participants, for all anatomical

A number of studies have since shown that large-scale anatomi-
cal networks of the mammalian cerebral cortex exhibit small-world
attributes (Bassett and Bullmore, 2006). Small-world structures
has been reported to exist in the cortex of non-human primates
based on data derived by classical tract tracing (Sporns et al., 2000;
Sporns and Zwi, 2004), as well as in networks derived from diffu-
sion imaging of the human brain (Gong et al., 2009; Hagmann et
al., 2008, 2007; Iturria-Medina et al., 2008), see Fig. 5. The detec-
tion of small-world attributes appears to be largely independent
of the parcellation scheme or the spatial resolution and is there-
fore a robust indicator of the existence of local communities or
modules that are globally interconnected. The brain regions that
link together local communities have special functional roles in
maintaining the overall integrity of the network, as well as pos-
sibly controlling patterns of information flow between modules. A
set of network measures originally defined in the social sciences
can assess the degree of influence of individual regions or connec-
tions on the flow of information in the network. These measures
of “centrality” assess how many of the network’s shortest paths
travel through each region or connection. Regions of high central-
ity participate in many of these short paths and are often essential
for linking different communities to each other. Their loss is partic-
ularly disruptive to the network (Honey and Sporns, 2008). In the
human brain, several regions in the frontal and parietal cortex have
high centrality, particularly the posterior cingulate and precuneus

(Hagmann et al., 2008), a key region of the brain’s default mode
network, see Figs. 5 and 6.

Network analysis tools are likely to gain importance as more
connection data sets from healthy human participants and from
people with clinical conditions become available. Network metrics
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Fig. 5. Average shortest path and clustering coefficient and node centrality. (A) The edges are chosen from the set of all edges E giving the priority to the edges with high
w me nu
( les). A
h gy (H

a
c
a
a

F
M
d
t

eights (“Top-weight edges”). As a reference we take a random graph with the sa
blue circles), subject 2 (green diamonds), random graph reference (black filled circ
emispheres showing ROI centrality, averaged across five. Adapted from PLoS Biolo
re beginning to be applied in comparison studies of the structural
onnectivity of healthy and diseased brains (e.g. Bassett et al., 2008),
nd they may become important diagnostic tools in future clinical
pplications of the connectome.

ig. 6. The ConnectomeViewer as a set of plugins. A Connectome File of an individual s
ayavi2 plugins to modify visualization settings. 3D View shows network nodes (blue cub

ensity, a set of surfaces (some central gyri & frontal pole) are visible. Node information p
he command to compute clustering of the Resolution 500 network is shown.
mber of nodes and edges, and the same degree distribution. Color code: subject 1
dapted from (Hagmann et al., 2007). (B) Lateral views of the right and left cerebral
agmann et al., 2008).
3.2. Functional connectomics

A major motivation for the comprehensive mapping of connec-
tivity in mammalian brains is the possibility that such maps will

ubject with five resolution is opened, available surfaces and atlases are depicted.
es) and selected nodes (green cubes), thresholded edges colorcoded by connection

opup with link to ConnectomeWiki. An IPython Shell allows scripting functionality,
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rovide a window onto the large-scale functional architecture of
he mammalian brain. If human structural connection networks
an be reliably partitioned into tens or hundreds of distinct network
odules, then it is expected that these modules will correspond to

unctionally localized subdivisions of the brain. Indeed, connection-
ased subdivisions of premotor cortex (Johansen-Berg et al., 2004)
ave been found to correspond closely to the subdivisions identi-
ed using functional imaging of motor and linguistic tasks in the
ame individuals, and connection-based subdivisions of thalamus
Zhang et al., 2008) as well as inferior frontal cortex (Anwander
t al., 2007) and cingulate cortices (Beckmann et al., 2009) have
een found to match the canonical functional parcellations of
hese areas. In a less function-specific vein, other groups have
nvestigated the relationship, across the brain, between so-called
functional connectivity” which is assessed using correlations in
esting-state BOLD signal with structural connectivity identified
sing diffusion imaging (Greicius et al., 2009; Hagmann et al., 2008;
oney et al., 2009; Koch et al., 2002; Skudlarski et al., 2008; van den
euvel et al., 2008, 2009; van den Heuvel et al., 2009; Van Dijk et al.,
010). These studies are of a more exploratory nature, because the
unctional significance and neurophysiological basis of the correla-
ion patterns in resting-state BOLD signal are not well understood.
n the other hand, these studies promise to aid our understand-

ng of distributed and general organizational processes (Fox and
aichle, 2007) in the mammalian brain, as well as their large-scale
tructural underpinning.

Ultimately, one would like to go beyond the observation
f a simple correlation between structural integrity and mean
opulation-level neuronal activity. Towards this objective, a
umber of computational studies have attempted to combine inter-
egional connectivity data with intra-regional circuit and cellular
roperties to produce large-scale models of cortical (Ghosh et al.,
008; Honey et al., 2007, 2009; Knock et al., 2009) and corticothala-
ic function (Izhikevich and Edelman, 2008). The value of modeling

tudies is twofold. First, models produce predictions of the kind and
he strength of interactions that should be empirically observed
etween macroscopic assemblies (such as ROIs) on the basis of the

nteractions occurring between their microscopic constituents (i.e.
eurons and neuronal assemblies). Second, models are important

n helping us to understand how higher-order network features of
he anatomical structure (e.g. locally high centrality, or modularity)
ill manifest in the functional networks observed in neuroimaging

xperiments.
Although large-scale computational models are at present only

ough approximations of the complex multi-scale dynamics that
ctually occur within the brain, they provide a crucial connection
etween diffusion MRI studies and the larger body of neuro-
cientific and clinical research, and an important tool for exploring
he relationship between large-scale neural structure and function.

. Looking towards the future of connectomic research

As we mentioned earlier, there is still significant efforts that
eed to be put in the improvement of the technology dedicated to
he acquisition of connectomic data. Better MRI technology, better
ractography and registration methods will be developed and will
mprove resolution, reliability and artifacts. In addition efforts will
e made to ease analysis and organization of such data and very
iverse biological questions may potentially find an answer with
onnectomic research.
.1. Missing tools

As we have just seen, large-scale connectional networks directly
erived from in vivo imaging are getting more readily available
nce Methods 194 (2010) 34–45

and important questions can be answered using network visu-
alization and analysis approaches. Generic tools already exist to
analyze and visualize large-scale networks like Pajek (Batagelj and
Mrvar, 2003) or NetworkX (networkx.lanl.gov). Those and many
others where mainly used and developed for telecom (GraphViz,
www.graphviz.org) and theoretical social sciences (SocSciBot Net-
work, webometrics.wlv.ac.uk/networkhelp). Since they are not
dedicated to neuro-science, their use can be quite cumbersome in
this setting. Packages specifically designed for brain network anal-
ysis begin to emerge and are currently being developed in order
to meet this growing need to apply powerful network measure
and visualization techniques to neuro-networks. An example is the
brain connectivity toolbox (Rubinov and Sporns, 2009) and our the
ConnectomeViewer (Gerhard et al., 2009). Through the develop-
ment of this viewer, we are providing the scientific community
with an extensible tool for visualization and analysis of connec-
tomic data. A dedicated file format is defined; brain networks are
visualized in the form of directed and undirected graphs embed-
ded in 3D. Different layouts can be used. The python large-scale
network environment, NetworkX, is embedded and can be used
to perform analysis. Progressively dedicated useful brain network
analysis plugins will be added and hopefully will meet the commu-
nity’s needs.

Not only network measures and visualization are important for
connectomic research but also systematic data organization and
sharing is essential. Visionary work has been done by Rolf Kötter
and his colleagues several years ago for the Macaque (Stephan et al.,
2001). They developed an open database collecting and organizing a
very large amount of Macaque tracing studies (www.cocomac.org).
This facilitated immensely the emergence of pioneering studies
on brain network topology (e.g. Sporns and Kotter, 2004). An
other trans-species data-basing effort readily available is “The
Brain Architecture Management System (BAMS)” (Bota et al.,
2003). Recently, international efforts have begun to build standard-
ized ontologies in neuro-science (www.neurolex.org) especially
important in the field of neuroanatomy (Workshop on Neu-
roanatomical Nomenclature and Taxonomy, September 10–11,
2007, www.incf.org). We believe that embedding connectomics
research in this landscape, in order to provide highly standardized
and widely available connectional information for the human brain
would be very important to the entire neuro-science community.
Much like the existing brain databases such as Cocomac or BAMS
we plan to develop a fully integrated connectome wiki and database
that would provide the means to store and query easily the large
datasets coming from MRI connectomics in the upcoming years
(www.connectomics.org).

4.2. Neuro-science questions that may benefit from connectomics

Structural and functional imaging developments combined will
provide us with a more and more comprehensive map of brain con-
nectivity, which is expected in the near future to be at the root
of a significant improvement in our understanding how our brain
works in the healthy and pathologic state, as well as in the course
of development and senescence.

Large studies will be needed that combine on one hand, high
quality large structural and functional connectomic imaging data
and on the other hand collect elaborate demographic, psycho-
somato-motor, psychosocial and cognitive data as well as genomic
data. The powerful combination of this information and connec-
tome analysis should begin to expose the principles governing

brain network topology as well as its normal variation. Building
on these governing principles, sophisticated network models can
then be developed to further probe the link between structure and
function. Not only will the variation of structural and functional
connectional patterns be characterized but also interdependencies

http://www.networkx.lanl.gov/
http://www.graphviz.org/
http://www.webometrics.wlv.ac.uk/networkhelp
http://www.cocomac.org/
http://www.neurolex.org/
http://www.incf.org/
http://www.connectomics.org/
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ill be studied. The combination of connectomic information with
emographic, social, cognitive and somato-motor data will allow
s to draw many statistical relationships to probe the complex
elationship between the latter and brain organization.

Even more exciting is the potential inferences we will be able
o draw from a clever combination of large population-based
onnectomic and genomic information. Indeed, our knowledge of
enetic and epigenetic influences on brain development, including
echanisms governing neuronal migration and connectivity

s rapidly growing, as are the genomic databases (Bystron et
l., 2008; Jakovcevski et al., 2009; Mochida and Walsh, 2004)
www.ornl.gov/sci/techresources/Human Genome/home.shtml).
uch large-scale genomic data combined with the high density
f information provided by a contectome database will be trans-
ormative. By combining the information in these databases we
an now begin to explore the genomic determinants of neuronal
etwork topology, network myelination (by combining our tech-
iques with diffusivity, magnetization transfer or T1 relaxation
easurements (Barnea-Goraly et al., 2005; Gogtay et al., 2004;
ydis et al., 2006)), network information flow and functional

nteraction (using EEG and MEG).
The ability to characterize and probe the human connectome

ill have a dramatic impact when focused on not only nor-
al adults but also the developing, degenerating and diseased

rain. From birth to early adulthood the brain undergoes dra-
atic modifications, with neuronal loss, dendritic proliferation

nd axonal growth followed by reductions in synaptic plasticity,
xonal pruning and myelination (Bystron et al., 2008; Innocenti
nd Price, 2005; Johnston et al., 2009). These processes result in
yral folding, regional specification and ultimately network opti-
ization. Similarly at the other end of age spectrum, normal

egenerative mechanisms induce changes in the brain white and
ray matter causing neuronal loss and modification of neuronal
nformation transport efficacy which inevitably translate them-
elves as cognitive decline (Damoiseaux et al., 2008; Meunier
t al., 2009). The genetic and epigenetic influences on network
opology and the implications for cognitive function across the
rajectory of development and decline are just beginning to be
nraveled.

In addition the neuro-science community is becoming increas-
ngly aware that mis- or dis-connectivity is implicated not only
n the etiology of many neuro-psychiatric diseases but also as
he primary mechanism for observed morphometric changes
Kyriakopoulos et al., 2008; Shenton et al., 2001; Thompson and
postolova, 2007). Schizophrenia and Alzheimer’s disease are the

wo most prominent examples (Bassett et al., 2008; Buckner
t al., 2009). In both cases it has been shown that widespread
hanges in cortical thickness, white matter structure, brain elec-
rophysiology and metabolism occur and are hypothesized to be
elated to changes in the underlying connectivity, which likely pre-
isely translates into the related cognitive impairment. Similarly in
evelopmental disorders such as autism, theories of mis- and dis-
onnection are emerging with the view that in autism small-world
onnections dominate with deficits in control and integration and
ontrol governed by long-range connections (Casanova and Trippe,
009; Frith, 2004; Geschwind and Levitt, 2007; Perez Velazquez et
l., 2009).

. Conclusion
In vivo and post-mortem diffusion MRI advances, in combina-
ion with sophisticated post-processing methods, are opening a
ew field called MR connectomics. This field is not solely about
eveloping technique for high-throughput and high-resolution
onnectional mapping. In combination with functional techniques,
ence Methods 194 (2010) 34–45 43

it is more importantly the field that will provide us with the right
framework to consider the brain’s complexity.
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