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Over the past decade, scientific interest in the properties of large-scale spontaneous neural dynamics has
intensified. Concurrently, novel technologies have been developed for characterizing the connective
anatomy of intra-regional circuits and inter-regional fiber pathways. It will soon be possible to build
computational models that incorporate these newly detailed structural network measurements to make
predictions of neural dynamics at multiple scales. Here, we review the practicality and the value of these
efforts, while at the same time considering in which cases and to what extent structure does determine
neural function. Studies of the healthy brain, of neural development, and of pathology all yield examples of
direct correspondences between structural linkage and dynamical correlation. Theoretical arguments further
support the notion that brain network topology and spatial embedding should strongly influence network
dynamics. Although future models will need to be tested more quantitatively and against a wider range of
empirical neurodynamic features, our present large-scale models can already predict the macroscopic
pattern of dynamic correlation across the brain. We conclude that as neuroscience grapples with datasets of
increasing completeness and complexity, and attempts to relate the structural and functional architectures
discovered at different neural scales, the value of computational modeling will continue to grow.
ll rights reserved.
© 2010 Elsevier Inc. All rights reserved.
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Introduction

The brain is composed of anatomically distinct elements
interconnected by a dense web of structural links. This structural
network shapes how neural dynamics—the processes underlying
human cognitive function—unfold over time. Structure–function
relationships are pervasive in biology and range in scale from the
folding of proteins up to the biomechanics of mammalian skeletons.
Structure invariably informs and constrains biological function. In
what ways does structure predict function in the human brain? We
review evidence at microscopic and macroscopic scales, and frame an
answer from the perspectives of network theory and computational
modeling.

Large-scale computational models now combine neuroanatomical
and physiological connectivity data with unprecedented comprehen-
siveness and detail. What can these models tell us about the relationship
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between anatomical connectivity and dynamic interactions that develop
upon the network over time?

The question gains in significance because of the accumulation of
highly resolved neural connectivity data recorded from individual
participants. Until the recent arrival of noninvasive diffusion imaging
techniques, mapping of human brain connectivity depended largely
on gross dissection or on postmortem histology. These methods left
large gaps in our understanding of the structural substrate of
cognition. The comprehensive description of human brain connectiv-
ity—the connectome (Sporns et al., 2005)—has now become a feasible
scientific goal. The availability of detailed large-scale connectivity data
offers the opportunity to understand the links between brain
structure and brain function at the regional level, and parallel
approaches to mapping the connectivity of single neurons will
facilitate a more complete understanding of the functioning of local
neural circuits.

The paper is structured as follows. In the second section we define
key terms such as “structural connectivity” and “functional connec-
tivity”, we make a distinction between two levels of brain organiza-
tion, and we introduce the computational framework of network
modeling approaches. The third section addresses the structure–
function relationships observed among individual neurons and
among small populations of neurons. We examine the evidence for
precise and patterned synaptic targeting, and the potential role of
such precise structure in local circuit dynamics. In the fourth section
we review the evidence for a link between structure and function at
the large scale. We focus on empirical studies of spontaneous and
task-evoked neural interactions. We further review how structure–
function relationships depend on the spatiality of the brain and how
they change across time, or as a consequence of local or distributed
network damage. Throughout, we attempt to establish links between
empirical findings and results of network analysis and computational
modeling. We close with some considerations of empirical and
modeling developments in the near future.

Definitions, scales, and models

When asking whether “structure” determines “function” in a given
context it is necessary to specify one's usage of the key terms. In the
present context, we take “structure” to refer to the spatial and
topological arrangement of connections between neuronal elements.
The notion of “function” is more delicate. By the “function” of a
particular neuron or brain region we do not refer to the set of
behavioral or psychological functions (e.g. attention, memory)
subserved by a given neural circuit or system, but rather to the
kinds of dynamics (e.g. coherent oscillation, long-range temporal
autocorrelation) typically exhibited within the active circuit. This
definition focuses on the relationship between the structure of a
neural circuit and its dynamic repertoire. This relationship, while
often indirect, is nonetheless closer than that between anatomical
structure and organismic behavior, which takes place within a social
and ecological context.

For discursive purposes, we will draw a (somewhat arbitrary)
distinction between the micro and macro scale. We take macroscopic
neural structure to be that which is seen with current neuroimaging
technology (e.g., magnetic resonance imaging), at a maximal spatial
resolution of voxels with a size of several cubic millimeters. Network
structure at this scale is a combination of long-range intra-regional
horizontal fibers, as well as the sets of fiber bundles or fasciculi linking
neuronal populations inter-regionally. Microscopic neural structure is
defined as everything more fine-grained than the macroscopic scale,
from the radial groupings of neurons in sensory cortices down to the
level of individual spines. At this microscopic scale, network structure
is composed of inter-neuronal connections mediated by single axons
and synapses. The simple micro–macro scheme we employ here may
also be refined to recognize important “mesoscale” circuitries
encompassing hundreds to thousands of neurons (Ingber and
Nunez, 1990; Freeman, 2000).

In neuroimaging, the metabolic signals measured in an individual
voxel are a complex aggregate of all micro-scale activity within that
locale. One could argue that all dynamics observed at the macroscopic
scale are reducible to those seen at this microscopic level. While it has
not been unambiguously demonstrated that macroscopic neural
signals have an “emergent” functional role, it is known that signals
aggregated across heterogeneous populations of thousands or
millions of neurons can be directly and precisely associated with
online behavior (e.g. Miller et al., 2009a) and that they can exert
modulatory feedback on the spiking of their constituent neurons (e.g.
O'Keefe & Recce, 1993). It is also the case that very large populations of
single neurons simply cannot, at present, be individually and
simultaneously recorded. Hence, we advocate an inclusive and
multi-scale approach to the characterization of brain networks
(Breakspear and Stam, 2005), cognizant of the fact that local circuits
exist within an ecology of large-scale processes that feed back into
the microscopic domain, and that whole-brain contrast maps arise
from exquisite local circuitry that is invisible to magnetic resonance
imaging.

In this paper we use the terms “structural connectivity” and
“functional connectivity” according to their standard usage in the
neuroimaging literature. Structural connectivity (SC) refers to
macroscopic structural linkage, as obtained, for instance, from long-
range tract tracing or diffusion imaging tractography. Functional
connectivity (FC) refers to the statistical dependence between time
series describing the neural dynamics at distinct locations in the brain
(Friston, 1994). Both SC and FC can be recorded and estimated with a
broad array of methods, many of which allow the representation of SC
and FC datasets as connection or adjacency matrices (Bullmore and
Sporns, 2009) amenable to quantitative analysis and modeling.

In examining the evidence for a relationship between structure
and function, we make reference to computational models of both
microscopic and macroscopic neurodynamics. These models embody
assumptions about the intrinsic dynamics of neuronal elements or
nodes, and also about the pattern and strength of connectivity
between nodes. In most of the examples discussed in this review,
models primarily serve to generate high-dimensional neural dynam-
ics at micro or macro scales, and thus allow the exploration of rules
and principles that translate structural into functional connectivity
(Breakspear and Jirsa, 2007; Breakspear and Knock, 2008; Knock et al.,
2009). Such models can be assessed and refined according to whether
they produce patterns of functional connectivity that match those
observed empirically. A long-term goal of thesemodeling endeavors is
to identify a mapping between dynamic network states and cognitive
processes.

Thinking inside the voxel: Structure and function of
neural circuits

Ten cubic millimeters of human cerebral cortex—the approximate
volume of a standard fMRI voxel—contains on the order of 105

neurons and 109 synapses (Pakkenberg and Gundersen, 1997). In
human sensory cortices, such a voxel will typically contain between
10 and 40 functional domains (assuming each domain has a diameter
between 300 and 600 μm). Functional domains are constituted by sets
of neurons that show similar responses to variations in somatic,
auditory or visual stimulation (Mountcastle, 1997). While the
existence of such functional domains is undisputed (Hubel, 1978),
there has been some disagreement as to whether the boundaries of
functional domains correspond to the boundaries of any clearly
defined anatomical units. It is unclear, for example, whether cortical
columns have distinct anatomical boundaries (Douglas and Martin,
2007), whether they are purposefully composed of “minicolumns”
(Mountcastle, 1997), and whether they represent an essential feature
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of cortical computation that is shared across many species (Horton
and Adams, 2005).

In visual cortex, functional domains have long been known to exist
in correspondence to, among other properties, the ocular dominance
and orientation preference of groups of neurons. Anatomical and
physiological evidence suggests that longer range intra-regional
connections (N0.5 mm from the labeled soma) occur in patches
(Fig. 1), with a preference to connect neurons with similar receptive
field properties (Gilbert and Wiesel, 1983; Malach et al., 1993;
Bosking et al., 1997; Angelucci et al., 2002). Importantly, neurons with
similar tuning properties are likely to be co-active, even during
spontaneous activity, i.e. under “resting-state” conditions (Tsodyks et
al., 1999; Kenet et al., 2003). As a result, structural and functional
connectivity should be expected to correspond quite strongly within
any millimetric patch of visual cortex imaged at a spatial resolution
coarser than the width of a pyramidal dendrite bundle (∼23 μm;
Peters and Sethares, 1996).

Although ordered functional domains are clearly observable in
sensory cortices, it is not yet known precisely which structural
regularities underlie these dynamical phenomena. Early studies of
local synaptic connectivity in the cerebral cortex suggested that
patterns of connectivity were essentially probabilistic functions of
distance (Sholl, 1953; Uttley, 1955; Braitenberg and Schüz, 1998). In
such random network models a heavy burden is placed on learning
and synaptic modification to achieve functional specialization. More
recent theoretical and computational research has advanced the
concept of local circuits as “computational reservoirs” that can be
trained to accommodate a variety of functional roles (Maass et al.,
2002; Buonomano and Maass, 2009; Sussillo and Abbott, 2009). So
long as the neural reservoir has sufficient built-in complexity (i.e., is
capable of rich dynamics) a large variety of input–output mappings
can be realized (Bertschinger and Natschläger, 2004), including the
approximation of intricate time-varying functions, but rules that link
specific synaptic patterns to specific input–output transformations are
yet to be described (e.g. Häusler et al., 2009).

However, several recent lines of evidence point to the existence of
highly non-random structural features in cortical circuits. Connec-
tions among specific neuronal cell types are more prevalent than
Fig. 1. Structure–function relationship at the cellular scale. (A) Overlay of an orientation pref
distribution after injection of an anatomical tracer into a site located at the upper left (Bosk
upper right hand corner. Note boutons nearby the injection site are found within all orie
orientations. Reproduced from Bosking et al. (1997), with permission. (B) Spontaneous a
individual frames obtained from optical recordings of neural activity in area 18 of the cat. Th
(no visual stimulus was presented) and the panel on the right shows a single frame recor
between all three panels, particularly the spontaneous and evoked response patterns. From
expected by chance (Thomson and Bannister, 2003; Stepanyants et al.,
2004), with important functional outcomes. For instance, selective
connections among GABA-ergic cells might allow them to exert
focused control over principal cells in neocortex (Hestrin and
Galarreta, 2005). Applying the idea of network motifs (Milo et al.,
2002) to connection data extracted from in vitro cortical recordings,
Song et al. (2005) found that a subset of interaction configurations
weremore prevalent than expected by chance. These specific patterns
may provide a structural skeleton or backbone that enhances the
regularity of dynamic firing patterns. A range of other intra-regional
correlation patterns and their presumed structural bases have
recently been reviewed by Kohn et al. (2009).

Modeling studies support the notion that specific, ordered patterns
of connectivity are associated with particular dynamical outcomes.
Binzegger et al. (2009) have examined the relationship between
dynamic stability and the wiring topology within amodeled columnar
circuit. The ability of neurons to synchronize their firing patterns also
depends on the topology of their structural connectivity, and the
coexistence of local and long-range connections appears to facilitate
this dynamic process (e.g. Masuda and Aihara, 2004; Buzsáki et al.,
2004). Other models have demonstrated that network topology and
neural dynamics are mutually interdependent once mechanisms of
neuroplasticity, which mold connection topology in an activity-
dependent manner, are taken into account (Rubinov et al., 2009).

Connectivity also plays a role in shaping the temporal organization
of neural activity. Roopun et al. (2008) have investigated the
relationship between microcircuit topology and the generation of
nested rhythms. Another recent modeling study, using networks of
Hodgkin-Huxley neurons, showed that a specific three-node motif,
previously identified as characteristic of inter-areal cortical connec-
tivity (Sporns and Kötter, 2004; Sporns et al., 2007) promotes zero-lag
synchronization despite the presence of significant conduction delays
(Vicente et al., 2008). This model and others (Ostojic et al., 2009)
highlight the relationship between neural connectivity and time-
dependent correlations among cells.

Another form of structural organization with clear functional
consequences is point-to-point topography (Thivierge and Marcus,
2007). This pattern is found in all primary sensory areas of cortex and
erence map, optically recorded from the striate cortex of the tree shrew, and the bouton
ing et al., 1997). The orientation preference at the tracer injection site is shown in the
ntation preferences, while boutons farther away are preferentially located in similar
nd evoked orientation-selective responses in visual cortex. Orientation map, and two
e middle panel shows a single frame obtained during a spontaneous recording session
ded during the presentation of a grating with vertical orientation. Note the similarity
Kenet et al. (2003), reproduced with permission.
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serves to preserve relationships among representations at the
periphery. In the visual system, for instance, inputs from the retina
activate areas of striate cortex such that features of an image
represented close together on the retina will activate nearby regions
of cortex. This form of topography is sufficiently precise that different
portions of visual space occupy separate anatomical positions within
the dendritic tree of individual midbrain neurons (Bollmann and
Engert, 2009). Topographic representations also allow, in principle,
for a range of information processing mechanisms to be implemented
using short-range circuitry: rapid feature detection by feedforward
pooling is one example (e.g. Serre et al., 2007) and information
propagation by traveling waves is another (Rubino et al., 2006).

The pattern of local synaptic connectivity found in the human
nervous system is likely shaped by a combination of numerous
biological and computational constraints, as well as stochastic growth
processes. Conservation of wiring length and volume (Chklovskii et
al., 2002; Buzsáki et al., 2004), the efficiency of short average path
lengths (Kaiser and Hilgetag, 2006), and the value of an explicit
topographic neural representation of behavioral repertoire (Graziano
and Aflalo, 2007) are all principles that may influence the arrange-
ment of synaptic connectivity. Random variations in molecular
gradients and axonal pathfinding (Mortimer et al., 2009) or in axo-
dendritic interactions (Lichtman and Smith, 2008) during neural
development are also likely contributors. Jointly, these processes
mold synaptic circuits to achieve specific dynamics and processing
capabilities. Importantly, models have suggested that identical
dynamical outcomes can be achieved on the basis of distinct sets of
synaptic parameters and circuit mechanisms (Prinz et al., 2004), an
example of network degeneracy (Tononi et al., 1999). Therefore,
while the evidence does suggest that many uniquely specified
structure–function relationships are manifest within local circuits,
the assertion that a given structure is necessary or sufficient for a
specific dynamical or behavioral outcome may not always be
warranted.

Independently of what organizational principles best describe local
neural wiring, it is clear that the activity of local circuits has
consequences for more global aspects of neural dynamics (Breakspear
and Stam, 2005). Small changes in local circuit properties—both at the
functional and anatomical levels—canhave a large impact on the activity
of broadernetworks inwhich they are embedded.Next,we examine the
relationship between connectivity and dynamics at the large scale.

From single voxels to the whole brain: Structure and function of
large-scale systems

The analysis of spontaneous neural dynamics offers an opportunity
to measure the aggregate level of relation between structural and
functional connectivity in a relatively task-neutral manner. Several
studies have performed a combined analysis of structural connectivity
(SC) derived from diffusion imaging and tractography, and functional
connectivity (FC) derived from spontaneous fluctuations of the BOLD
response (reviewed in Damoiseaux and Greicius, 2009). The first such
study examined SC and FC within a single axial slice (Koch et al.,
2002), and reported that the presence of strong SC tended to imply
the presence of strong FC, but that strong FC could also regularly be
observed between structurally unconnected regions. Subsequent
studies have employed larger coverage and different parcellation
schemes, with generally consistent results. Using a parcellation of the
cortex into approximately 1000 equal-sized regions of interest,
Hagmann et al. (2008) and Honey et al. (2009) reported robust
correlations between the strengths of SC and FC across the entire
cortical surface (Fig. 2). This correlation persisted after potential
confounds such as spatial proximity between regions were taken into
account, and indirect structural connections were found to account for
some proportion of the functional connectivity observed between
node pairs lacking direct linkage. Amore fine-grained analysis, carried
out by Skudlarski et al. (2008) also reported a robust SC–FC
correlation after performing a voxel-by-voxel SC–FC comparison
across almost the entire extent of the cerebral gray matter.

More focused analyses of specific brain systems confirmed that
functionally connected sets of brain regions tended to be structurally
linked. The defaultmode network (DMN) is comprised of a set of brain
regions, including the posterior cingulate and precuneus, lateral
parietal cortex and elements of medial prefrontal cortex that are
jointly activated and linked by FC in the resting state (Raichle et al.,
2001; Greicius et al., 2003). Several studies have reported the
presence of structural pathways between some core components of
the DMN (Greicius et al., 2009), as well as between components of
several distinct resting state networks, including the DMN (Van den
Heuvel et al., 2009a). Zhang et al. (2008) mapped resting-state BOLD
signal correlations between human thalamus and cortex and noted
significant agreement between BOLD correlations and connectional
anatomy within the same cortical hemisphere. Vincent et al. (2007)
found that cortical patterns of coherent spontaneous BOLD fluctua-
tions in anesthetized macaque monkey were similar to those of
anatomical connectivity derived from tract tracing studies.

Evidence for a correspondence between SC and FC in a task-related
setting comes from the work of Stephan et al. (2009), who
demonstrated that models of “effective connectivity” (i.e. causal
interactions) in lexical and spatial task performance in fMRI are
improved when the priors on the inter-regional coupling parameters
are informed by SC data. SC–FC linkages may also account for
individual variations in behavior and cognition. Several studies have
pointed to correlations between FC and behavioral and cognitive
measures obtained during task performance. These relationships have
emerged in studies focusing on single functional connections
(Hampson et al., 2006) as well as global network measures related
to the efficiency of information flow (Van den Heuvel, 2009b).

Taken together, these studies support the idea that structural
connections, when present, are highly predictive of the presence and
strength of functional connections. However, structural connections
cannot reliably be inferred on the basis of observed functional
coupling, since strong functional connections may also exist between
regions that are not directly anatomically linked. Recent successes in
relating empirical structural to functional connectivity should not lead
to the mistaken conclusion that their relationship is simple or even
trivial. Van Dijk et al. (2009) have recently reviewed the optimal
methodological parameters for FC acquisition, with a focus on the
utility of FC measurement in connectomics.

It is hoped that a more refined understanding of this structure–
function relationship will emerge from computational models of
endogenous neural activity. Honey et al. (2007) investigated the SC–FC
relationship in a large-scale model of the macaque monkey cortex,
consisting of neural mass oscillators based on physiological character-
istics of cortical neuronal populations (Breakspear et al., 2003) that
were coupled by a structural network describing the segregated
regions and interregional pathways of macaque cortex. Spontaneous
neural activity in the model exhibited patterns of transient synchro-
nization and functional connectivity on multiple time scales. The
availability of SC fromdiffusionMRI (Hagmann et al., 2008) allowed an
extension of themodel to the scale of the entire human cerebral cortex
(Honey et al., 2009). Functional connectivity patterns were derived
from cross-correlations of synthetic BOLD time series data. Compar-
ison of these modeled patterns to the empirically obtained functional
connectivity revealed significant similarity (Fig. 3). The presence and
strength of a structural link was predictive of the presence and
strength of a functional connection in both model and data.

Modeling studies by Ghosh et al. (2008) and Deco et al. (2009)
investigated the role of noise and conduction delays in shaping large-
scale neural dynamics, and noted that both of these factors critically
effected the dynamical outcomes, including the presence and the
relative phases of b0.1 Hz rhythms. In all studies, FC was found to be



Fig. 2. Direct comparison of structural and functional connectivity in the human brain. (A) Structural connectivity derived from diffusion imaging (Hagmann et al., 2008; Honey et al.
2009) and resting-state functional connectivity derived with functional neuroimaging (Honey et al., 2009), from the same set of five participants. Maps show connectivity among
998 ROIs in an anterior–posterior–temporal arrangement to emphasize spatial organization. (B) Scatter plot of structural connections and corresponding functional connections
(r=0.54, pbb10−6). (C) Scatter plot of structural connections and corresponding functional connections (r=0.61, pbb10−6) for the 200 ROIs that form the default mode network.
These 200 ROIs were derived by seeding the DMN in the posterior cingulate/precuneus (PCC), medial frontal cortex, and lateral parietal cortex and selecting the 200 ROIs that were
most strongly functionally correlated with these seed regions. (D) Location of the 200 DMN ROIs and their structural interconnections. Note the presence of dense pathways between
the medial frontal cortex and the PCC as well as lateral parietal cortex, as well as the relative absence of connections between the lateral parietal cortex and the precuneus (see also
Van den Heuvel et al., 2009a). All data shown here represent averages over all five participants and are replotted from Honey et al. (2009).
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dynamically rich and diverse, forming a “functional repertoire” of FC
patterns that was explored during spontaneous neural activity (see
Fig. 1). An extension of large-scale models of the human brain to
networks of millions of thalamic and cortical spiking neurons
(Izhikevich and Edelman, 2008), each parameterized into 1 of 15
distinct types and connected in accordance with diffusion imaging-
inferred connection maps, also generated rich spatiotemporal
patterns that resembled rhythmic neural activity in the resting brain.

Taken together, these modeling studies reinforce the idea that SC
and FC are related. However, they also suggest that the degree of their
correspondence depends on spatial resolution and time scales. The
relationship is particularly robust for functional networks obtained at
low frequencies (as in resting state fMRI) and over long sampling
periods (on the order of minutes). At higher frequencies and within
shorter time windows, FC fluctuates in a complex pattern, reflective
of the rich underlying dynamics. Thus, we should not think of the
brain's endogenous neural activity as a static time-invariant pattern
of interneuronal or interregional coupling. Spontaneous dynamics
allow for rapid reconfigurations of functional interactions at fast time
scales of hundreds of milliseconds, and these reconfigurations are
manifestly necessary for internal cognitive control (e.g. Fries, 2005)
and environmentally responsive behavior (Bassett et al., 2006).
Network models of structural and functional connectivity

Network topology of SC and FC

Network concepts have been used to define principles of the
structural and functional organization of the cerebral cortex for many
decades. The “mosaic organization” of the cortex into specialized
regions that become functionally integrated during perception and
cognition (Zeki, 1978; Zeki and Shipp, 1988), as well as the idea that
large-scale connectivity in the primate brain is structurally (Felleman
and Van Essen, 1991) and functionally (Mesulam, 1998) organized
into multiple processing streams and forms a hierarchy. More
recently, the arrival of quantitative network modeling and analysis
(Sporns et al., 2004; Bullmore and Sporns, 2009) has provided well-
defined, internally consistent, and methodologically flexible tools
with which to characterize and report hierarchy (Reid et al., 2009),
informational efficiency (Achard and Bullmore, 2007), small-world
connectivity (Sporns and Zwi, 2004; Bassett and Bullmore, 2006),
modularity (Chen et al., 2008; Meunier et al., 2009), and hub
structure (Hagmann et al., 2008; Buckner et al., 2009) in brain
network data. Topological analyses of brain network have been
carried out on MR imaging data as well as on electrophysiological



Fig. 3.Modeling and predicting functional connectivity. (A) Direct comparison of empirical resting state functional connectivity andmodeled functional connectivity, across all brain
regions (Honey et al., 2009). (B) Cortical surface maps for structural connectivity (SC), empirical resting-state functional connectivity (rsFC) and modeled functional connectivity.
The maps were created by placing seeds in the PCC, medial frontal and lateral parietal cortex. Note substantial agreement between modeled and empirical FC along the cortical
midline, but some mismatch in the lateral parietal cortex. Data replotted from Honey et al. (2009).
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recordings (e.g. Stam, 2004; Stam et al., 2007). The motivation for
topologically characterizing brain networks is manifold. Most
importantly for our present discussion, graph-theoretic measures
can be used to summarize the properties of both SC and FC datasets,
enabling the direct comparison of structural and functional network
architecture.

If structural and functional connectivity are indeed related we
might expect to see correspondences between their network
topologies. Several studies have documented common architectural
features such as small-world attributes, and the existence of modules
and hubs. For example, structural hubs in the posterior medial cortex
(Hagmann et al., 2008; Gong et al., 2009) correspond to hubs in
resting-state fMRI FC networks (Buckner et al., 2009). The shared
small-world organization of structural and functional networks
allows for economical wiring and communication costs, and it also
promotes efficient neural processing by ensuring short communica-
tion distances, as well as diverse and complex network dynamics
(Sporns et al., 2000). A more recent neural mass modeling study by
Ponten et al. (2009) emphasizes that the path length and clustering
properties of FC networks do not necessarily vary smoothly with the
parameters of the underlying coupling matrix.
When assessing and interpreting the statistics that characterize
SC and FC networks, it is worth bearing in mind that the methods
used to acquire SC and FC empirically may influence the observed
network features (Rubinov and Sporns, 2010). Because of the
nature of the correlation coefficient, for example, it will commonly
be the case that FC is transitive. In other words, strong FC between
A and B as well as between A and C is associated with an increased
probability of strong FC between B and C, and a greater degree
of clustering in FC networks than expected in the simplest null
models.

Spatiality in the SC–FC relationship

As we consider brain regions that are increasingly distant from
one another, we find that both SC and FC are, on average, diminished.
It is important to analytically account for this systematic spatial
variation in SC and FC patterns, because the inter-regional distance
may mediate a large portion of the covariation between SC and FC.
Notably, in the two studies that examined the role of distance
(Skudlarski et al., 2008; Honey et al., 2009) it was observed, that
although distance contributed significantly to the SC–FC correlation,
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the SC–FC relationship nevertheless remained highly significant in
even once inter-regional distance was included as a covariate in their
correlation analyses.

Although controlling for distance is an important component of the
analysis of SC–FC, caution should be exercised when interpreting the
results of such a manipulation. The cerebral cortex essentially forms a
two-dimensional sheet, and the observed prevalence of connections
linking spatially proximate regions (e.g. Young, 1992) results in a
“lattice-like” topology. Hence, the notions of “network proximity” and
“spatial proximity” are intertwined. When one is “controlling” for
distance, one typically aims to correct for spurious sources of
covariation between SC and FC, i.e. sources of covariation other than
those arising from direct neural interactions. But many such instances
of “spurious” FC can ultimately be demonstrated to arise from SC. For
example, FC between adjacent portions of cortex may arise from
traveling wave activity across the cortical surface (e.g., Lubenov and
Siapas, 2009) or from common thalamic innervation. However, in both
cases, the spatiality of the FC profile arises from a structural basis
which also displays spatial autocorrelation: the traveling waves are
likely mediated by lattice-like horizontal connections within the
cortical gray matter and the spatial autocorrelation in thalamocortical
drive is likely a result of reciprocal and near-neighbor feedback SC
between thalamus and cortex. The anatomical network of the brain is
spatially embedded, and this fundamental physical property induces
some neighbor-to-neighbor FC at many spatial scales.

SC and FC over time

One would expect that fast fluctuations of FC will occur during
spontaneous and task-evoked activity while plasticity and develop-
ment are accompanied by slower and mutually interdependent
changes in SC and FC. Computational models of large-scale neural
dynamics suggest that rapid changes in FC can occur in the course of
spontaneous activity, even while SC remains unaltered (e.g. Honey et
al., 2007; Ghosh et al., 2008; Deco et al., 2009). Detailed analysis of
electromagnetic and fMRI time series data suggests that functional
coupling between remote sites in the brain undergoes continual and
rapid fluctuations (Linkenkaer-Hansen et al., 2001; Stam and de Bruin,
2004; Freyer et al., 2009), possibly indicative of a complex dynamic
regime (Kitzbichler et al., 2009). Fluctuations in FC may result from
intermittency or metastability created by the shape of the system's
high-dimensional attractor (Tsuda, 2001; Breakspear, 2002). Transi-
tions in dynamic states of a large-scale neural system may thus occur
spontaneously, even in the absence of any overt stimulus. While these
computational studies, as well as many reports in the electrophysi-
ological literature, are suggestive of a high degree of dynamic
variability over periods of a few seconds, fMRI resting-state patterns
aggregated over a many minutes have proven to be both reliable and
robust (Damoiseaux et al., 2006). A comprehensive study (Shehzad et
al., 2009) examined the reliability of individual functional connections
and the consistency of functional networks measured with fMRI
within the adult brain. Based on a comparison of scans separated by
less than an hour and by as much as 16 months apart, the authors
concluded that functional connectivity was a moderately reliable
quantity over these timescales, and noted that the more highly
reliable functional connections were also more likely to be linked to
the default-network and to be positive rather than negative correla-
tions. Honey et al. (2009) also examined inter-scan reliability, and
noted that, although FC did appear to be a reliable quantity, the
variability in FC across runs was greater than would be expected if the
underlying random variables describing fMRI time-series were static,
subject only to variability induced by sample size effects. They
suggested that some of this excessmight result from fluctuations in FC
that were occurring at a time-scale more rapid than that at which FC
can be measured in fMRI. Recent electrophysiological recordings from
the default mode network in humans (Miller et al., 2009b) not only
firmly establish the neuronal origin of task-related BOLD decreases in
the DMN, but also demonstrate a methodology that can soon be used
to more precisely quantify the ongoing fluctuations in large-scale
spontaneous FC.

Functional connectivity undergoes significant changes in the
course of learning (McIntosh et al., 2003), stimulation-induced
cortical reorganization (Rounis et al., 2006), and neuroplasticity
(Canals et al., 2009). A significant and unresolved question is the
extent to which SC is invariant in the adult brain, and whether large-
scale FC measurements might be used to detect specific, localized
changes in SC generated by ongoing synaptic plasticity associated
with, e.g. learning. Recent results from diffusion imaging studies
suggest that SC, even at a large scale, is plastic (Scholz et al., 2009) and
these structural changes may produce changes that are measurable
using functional neuroimaging.

The study of developmental change can powerfully inform our
understanding of both SC and FC, as well as their relationshipwith one
another and with distinct behavioral capacities. The pruning of over-
proliferated synapses, which begins in human visual cortex at
approximately 1 year of age and continues through adulthood, is a
critical element of cerebral development (Huttenlocher, 1990).
Between the ages of approximately 5 and 20 years, the ratio of gray
matter to white matter (as measured using tissue classification of MR
images) is found to decrease, as axonal myelination and cytoarchi-
tectural maturation proceed at different rates across the cortex
(Gogtay et al., 2004). While diffusion-imaging based SC mapping is
yet to be systematically assessed across the course of human brain
development, several cross-sectional studies have examined the
developmental trajectories of FC (Fair et al., 2007; Fair et al., 2009;
Supekar et al., 2009). Fair et al. compared groups of children (7–9
years old) and young adults (21–31 years old), and reported that FC
between nearby regions decreased in the course of development,
while long-range FC increased. Additionally, Fair et al. (2008)
observed that the FC of regions within the default system was quite
different between the child and adult groups: the default system FC in
children lacked its long-range intra-hemispheric rostro-caudal con-
nections. Combined with findings that the DMN appears to be absent
in human neonates (Fransson et al., 2007), these results indicate that
FC is substantially altered in parallel with the diverse biological and
behavioral changes that constitute human development.

Structural damage and functional deficits

The functional consequences of network damage are a central
concern in network studies of technological, social and natural
systems. Building on these approaches, the analysis of brain network
damage and the assessment of resulting functional deficits promise to
opennewavenues to understanding humanbraindamage anddisease.

Lesions are perturbations of structural brain networks that have
physiological effects. One way to gauge the possible consequences of
localized brain lesions is to model the effects of deleting subsets of
nodes and edges on the structure and function of the remaining brain.
Several such studies have been carried out on structural networks of
the mammalian cerebral cortex (Young et al., 2000; Honey and
Sporns, 2008) and have reported non-local consequences of local
lesions. More abstract network studies have examined the vulnera-
bility of structural networks to the deletion of single nodes and edges
(Kaiser and Hilgetag, 2004; Kaiser et al., 2007), with the authors
concluding that damage to nodes and edges of high centrality is
particularly deleterious. Consistent with these earlier studies, lesions
of highly central regions had the largest effects on FC in the remaining
brain in a recent model of human brain dynamics (Alstott et al., 2009).
For example, deletion of structural hubs along the cortical midline or
in the vicinity of the temporoparietal junction disrupted FC not only in
the immediate vicinity of the lesion, but also between pairs of remote
brain regions (Fig. 4).



Fig. 4. Dynamic consequences of lesions in a model of the human brain. Lesions were centered approximately at the location of the green cross, comprising about 5% of the cortical surface around the right anterior cingulate cortex (A) and the
left precuneus (B). Functional connections across the brain that were significantly changed (increased=blue, decreased=red) are shown in a dorsal view of the brain (middle plots) as well as within the left and right hemispheres alone. Note
that both lesions, while located in only one hemisphere, result in disruptions of functional connectivity in both ipsilateral and contralateral hemispheres. Reproduced from Alstott et al. (2009).
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Studies of functional networks in patients with structural lesions
and specific cognitive deficits support this model. He et al. (2007a)
examined FC in patients exhibiting spatial neglect following a stroke
in the right cerebral hemisphere. Acute disruptions of FC located
outside of the primary lesion site-in regions involved in spatial
attention-were found to be strongly correlated with an impairment of
attentional processing. These results support a network approach to
understanding complex neurological disorders such as spatial neglect
and document the contributions of nonlocal lesion effects to
disruptions of behavior and cognition (He et al., 2007b). Further
direct evidence for an acute change in FC following a disruption of SC
is provided by the study of Johnston et al. (2008) who analyzed pre-
and post-surgical functional images acquired from a young patient
who underwent callosotomy. In this individual, inter-hemispheric FC
was largely abolished, and intra-hemispheric was largely unaltered
acutely post-surgically.

Several neurodegenerative or neuropsychiatric disorders may be
traced to disturbances in SC that become functionally expressed in
disturbances of brain dynamics. The literature on changes in SC and FC
in neuropsychiatric conditions is a complex and expanding field, and
we refer the reader to reviews by Buckner et al. (2008), Greicius
(2008) and Bassett and Bullmore (2009) for more complete coverage.

Promising recent results come from the study of Alzheimer's
disease (AD) and the associated, potentially prodromal syndrome of
Mild Cognitive Impairment (MCI). The intrinsic and extrinsic FC of
DMN regions is found to be diminished in patients with AD (Greicius
et al., 2004; Wang et al., 2007) and MCI (Sorg et al., 2007).
Importantly, areas of increased amyloid deposition in healthy and
potentially pre-MCI elderly individuals exhibited abnormal task-
related BOLD signal in DMN regions (Sperling et al., 2009). In parallel,
it has been demonstrated that white matter anisotropy is altered in
the vicinity of the DMN in patients with amnesicMCI (Bai et al., 2009).
Ideally, future work will combine these metrics of pathology in a
single population of AD patients so that the interconnections between
them can be better understood. There appears to be substantial utility
for FC and SC measurements in the diagnosis (and potentially the
prognosis) of AD.

The link to SC and FC in other neuropsychiatric disorders is
definitive. The SC and FC signatures of schizophrenia do not appear to
be localized to any small subset of brain regions (e.g. Micheloyannis et
al., 2006). Some studies implicate DMN regions (Garrity et al., 2007),
while others have reported changes in aggregate network topological
properties (Bassett et al., 2008; Liu et al., 2008). There has been some
inconsistency in the findings of the field (Greicius, 2008) and it is
unclear whether this is a consequence of the intricacy of the disorder
or of methodological differences across groups. Diminutions of FC
magnitude have been detected in ADHD (Castellanos et al., 2008) as
well as autism (Kennedy and Courchesne, 2008; Monk et al., 2009),
whereas increased FC, in particular between DMN regions and the
subgenual cingulate, has been reported in cases of depression
(Greicius et al., 2007).

For all of these disorders, further progress in the characterization
of SC pathology is needed. An unanswered question of major clinical
relevance is whether it is more diagnostic to measure FC in the resting
state or under task conditions designed to elicit differentiating
pathology-linked behavior (Jones et al., 2009). Understanding
whether and to what extent task-free and task-focused protocols
measure a common “underlying” FC is also an important basic
research question, because its answer informs us as to which aspects
of FC are reflective of the present behavioral state, and which aspects
are more persistent, and therefore potentially reflective of the
functional architecture within which large-scale neurodynamics and
behavior must evolve. An important recent paper (Smith et al., 2009)
indicates that many of the functional networks detected in sponta-
neous activity are also expressed in functional activations patterns
across diverse task settings.
Conclusions

Rapid advances in recording and data processing methods are
beginning to yield structural and functional connection maps of brain
networks at multiple scales and with unprecedented accuracy and
resolution. Connectome datasets will facilitate a far clearer under-
standing of the relationship between structure and function in the
human brain. Initial results are encouraging, in that many of the
characteristics of functional brain dynamics can be traced to structural
patterns in connectivity. In this sense structure does predict function,
by shaping neural dynamics among cells and brain regions. However,
as our models become more complete, incorporating both local and
global connectivity data, our expectations of them must increase.

The next generation of models must make quantitative predictions
of—and must be tested against—not only the aggregate correlation
structure of neural dynamics in large populations, but also of
dynamical properties (such as the power spectrum) of individual
nodes. As the connective data becomes available to model multi-
synaptic circuits organized between cells of different types in distinct
cortical layers, our models must capture these interactions. Finally,
the detailed predictions of rapid changes in micro-scale dynamics
must then be related to the slowly changing patterns of functional
connectivity observed using neuroimaging.

At present, we cannot definitively specify the extent to which
structure shapes function within human brain networks, because the
structural networks remain to be fully characterized at bothmicro and
macro scales, and because we are only now beginning to quantita-
tively and empirically test the predictions of large network models.
What is clear, based on the studies we have reviewed, is that as we
undertake the considerable task of organizing and interpreting novel
datasets, computational modeling and network approaches will be
indispensable in our search for structure–function relationships
across the multiscale architecture of the human brain.
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