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Neuronal dynamics unfolding within the cerebral cortex exhibit
complex spatial and temporal patterns even in the absence of
external input. Here we use a computational approach in an
attempt to relate these features of spontaneous cortical dynamics
to the underlying anatomical connectivity. Simulating nonlinear
neuronal dynamics on a network that captures the large-scale
interregional connections of macaque neocortex, and applying
information theoretic measures to identify functional networks,
we find structure–function relations at multiple temporal scales.
Functional networks recovered from long windows of neural
activity (minutes) largely overlap with the underlying structural
network. As a result, hubs in these long-run functional networks
correspond to structural hubs. In contrast, significant fluctuations
in functional topology are observed across the sequence of net-
works recovered from consecutive shorter (seconds) time win-
dows. The functional centrality of individual nodes varies across
time as interregional couplings shift. Furthermore, the transient
couplings between brain regions are coordinated in a manner that
reveals the existence of two anticorrelated clusters. These clusters
are linked by prefrontal and parietal regions that are hub nodes in
the underlying structural network. At an even faster time scale
(hundreds of milliseconds) we detect individual episodes of inter-
regional phase-locking and find that slow variations in the statis-
tics of these transient episodes, contingent on the underlying
anatomical structure, produce the transfer entropy functional
connectivity and simulated blood oxygenation level-dependent
correlation patterns observed on slower time scales.

functional MRI � graph theory � neuroanatomy � synchrony

The anatomical connections between regions of the cerebral
cortex form a structural network upon which neural activity

unfolds. Cortical regions dynamically couple to one another
forming functional networks associated with perception, cogni-
tion, and action (1–4), as well as during spontaneous activity in
the default or resting state (5–12). Functional networks extracted
from higher-frequency dynamics (�10 Hz) undergo rapid re-
configuration, e.g., in perceptual binding (13) or sensorimotor
coordination (14). Functional networks extracted from lower-
frequency (�0.1 Hz) spontaneous cortical dynamics are orga-
nized into anticorrelated clusters (8, 10), and the transient
activation of these clusters has been linked to attentional pro-
cesses (10, 12). Recent analyses suggest that structural and
functional brain networks share ‘‘small-world’’ topologies and
hub nodes (15–20) and that structural and functional clusters
may closely correspond (21, 22). Nevertheless, it remains unclear
how functional networks at different time scales relate to one
another and to their common structural substrate.

Here we studied mappings between structural and functional
networks using a computational approach. A structural network
of segregated regions and interregional pathways was obtained
from anatomical studies of macaque cortex and collated using
the neuroinformatics tool CoCoMac (23). We then simulated the
mean activation of each brain region within this network using
a nonlinear model of spontaneous neuronal activity (24). From

these activity patterns we built maps of interregional interaction
by measuring transfer entropy (TE) [a measure designed to
capture patterns of directed interaction and information flow
(25)], in long (minutes) and intermediate (seconds) data sam-
ples. Our most fine-grained temporal measure is the phase
locking value (26), which can identify transient synchrony be-
tween region pairs on the millisecond scale. For all methods we
thresholded the regional interaction maps to produce functional
networks whose topologies can be compared with one another
and with that of the underlying structural network.

Node centrality is a useful diagnostic for comparing topolo-
gies, and so we first identified structural hubs using network
measures based on local f low, global centrality, and motif
distributions. After constructing functional networks, we found
temporally varying network structure at multiple time scales.
Using long data samples, TE yields the closest match between
structural and functional connections including a close corre-
spondence between structural and functional hubs. On a time
scale of seconds, we found that functional networks exhibit
significant fluctuations. These fluctuations reflect slow varia-
tions in the mean length and frequency of intermittent synchro-
nous episodes. These slow variations, both in functional connec-
tivity and in values of estimated regional blood oxygenation
level-dependent (BOLD) signal, were coordinated via anatom-
ical connection patterns, and we defined two major anticorre-
lated functional clusters. Our model suggests that the cortical
resting state is not time-invariant, but instead contains rich and
interrelated temporal structure at multiple time scales that is
shaped by the underlying structural topology.

Results
Identification of Structural Hubs. All analyses and simulations were
carried out using a connection matrix of macaque neocortex,
comprising 47 visual, sensory, and motor areas linked by 505
pathways previously identified by anatomical tracing studies
(Fig. 1A). Hubs in brain networks allow for increased levels of
information flow between otherwise distant or disconnected
nodes, acting as connectors or integrators at central locations
within the network. Because all of the hub identification tools we
employ depend on the degree distribution of the network, we
performed statistical comparisons to degree-matched random
and lattice networks using z-scores on a node-by-node basis [see
supporting information (SI)]. To estimate the capacity of a node
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to conduct information flow between its neighboring nodes, we
introduced the flow coefficient, a measure of ‘‘local centrality’’
(see SI). It is calculated as the number of actual paths of length
2 divided by the number of all possible paths of length 2 that
traverse a central node. Hub regions that act as bridges between
different communities of nodes are likely to exhibit small
clustering coefficients (16) and large flow coefficients. In ma-
caque neocortex, areas V4, 46, 7a, STPp, and TH (Fig. 1B) are
among those with flow-clustering ratios at levels that are signif-
icantly increased relative to degree-matched random controls.
Betweenness centrality (Fig. 1C) is a more global centrality
measure that captures the tendency of a node to lie along the
shortest path between pairs of nodes in the network (27). In
macaque neocortex, areas V4, 5, 46, TF, 7b, and SII are among
those areas with significantly elevated betweenness centrality.
Structural motifs (28, 29) provide a complementary means of
identifying hubs. In large-scale cortical networks, structural hubs
will tend to be reciprocally linked to brain regions that are not
directly connected to one another; i.e., they tend to participate
in motifs consisting of exactly two reciprocal edges (see Fig. 1D
Inset). Fig. 1E shows the motif participation profiles for indi-
vidual brain regions in macaque neocortex. Areas V4, 46, 7a,
STPp, 7b, FST, TE, MSTd, Ig, DP, and VP show significantly
increased motif contributions. Reviewing the results of f low
centrality, betweenness centrality, and motif approaches to hub
identification, we see that only area V4 emerges as highly ranked
across all three measures (Fig. 1 B–D) whereas areas 46, 7a, 7b,
and STPp show significance in at least two of these three
measures.

Simulation of Neuronal Dynamics. To emulate neuronal dynamics
within the macaque neocortex we implemented a neural mass
model adopted from a conductance-based model of neuronal
dynamics (30) for local population activity (31). Units of the
model describe local populations of densely interconnected
inhibitory and excitatory neurons whose behaviors are deter-
mined by voltage- and ligand-gated membrane channels. Sodium
and calcium channels display a nonlinear sigmoid-shaped graph

of voltage-dependent conductance. Potassium channel conduc-
tance is modeled in a more complex manner, exponentially
relaxing toward its voltage-dependent state. A medium-scale
(mesoscopic) array is then constructed from these local nonlin-
ear populations by introducing long-range pyramidal connec-
tions, mimicking glutamate-induced synaptic currents (24, 32).
Activity in the system arises purely from nonlinear instabilities.
Oscillations are hence spontaneous and self organizing. Spatio-
temporal patterns arise through reentrant excitatory–excitatory
feedback. In the present case we used the macaque neocortical
connectivity to determine the internode coupling. We chose
parameter settings that replicate realistic conductances and have
previously been reported to show complex, spontaneous activity,
including intermittency, phase synchrony, and marginal stability
(24, 32). Internode coupling was set to a low value (c � 0.1) at
which synchronous dynamics are weakly stable, allowing spon-
taneous switching between synchronous epochs and desynchro-
nous bursts (32). Under this parameterization the neural inter-
actions in the model reflect a shifting balance between the
effects of the structural substrate and of spontaneously arising
‘‘self-organizing’’ patterns that are uninfluenced by task- or
input-related factors. The model is described in detail in the SI.

Functional Connectivity at Multiple Time Scales. Functional connec-
tivity is defined as the statistical dependence between remote
neural processes (33). Here we identified functional connections
by using TE (25), an asymmetric information theoretic measure
designed to capture directed information flow. We first applied
it to long samples of time series data (240,000 time steps; 240
sec). TE values were thresholded to produce binary functional
networks (see Fig. 2A). The threshold was chosen such that the
total number of connections in a functional network is equal to
the number of structural connections. Using long data samples,
TE networks and structural networks showed up to 80% overlap,
whereas the overlap between structural networks and functional
networks extracted with mutual information and wavelet-based
tools was lower (see SI).

We carried out a detailed analysis of structure–function

Fig. 1. Structural connectivity and network hubs. (A) Large-scale anatomical connection matrix of macaque neocortex. (B) Ranking of areas for flow/clustering
ratio. Flow/clustering ratios for each region are compared with those obtained from 1,000 degree-matched, randomized networks. Regions with significantly
increased flow/clustering ratio (P � 0.05, uncorrected) are shown in dark gray. (C) Ranking of areas for betweenness centrality. Regions with significantly
increased (P � 0.05) centrality are shown in dark gray. (D) Ranking of areas for motif count of the motif class shown in Inset. Dark gray bars indicate that the
area shows increased motif counts (z-score � 2) relative to random and lattice controls.
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correspondence for several topological measures (see SI). The
degrees, f low coefficients, and centrality of nodes within TE
networks are strongly correlated with those of nodes within the
structural network. For example, betweenness centrality of
individual nodes is highly correlated between structural and TE
matrices (r2 � 0.78; see Fig. 2B). Weaker correlations for
centrality are observed when functional networks are con-
structed by using mutual information or wavelet methods (r2 �
0.58 and r2 � 0.53, respectively). This suggests that many of the

functional hubs identified in neuroimaging studies (18) are likely
to be structural hubs as well.

TE matrices computed over large data samples reveal, on
average, very close relations between the functional and struc-
tural characteristics of brain regions. However, analyses using
overlapping time intervals that are shorter while still allowing for
unbiased entropy estimation (30,000 time steps; 30 sec with a
6-sec shift between windows) reveal TE patterns as dynamic and
time-dependent, indicating gradual reconfiguration of func-
tional connections. These fluctuations occur despite the fact that
the underlying structural connections are of constant strength
and reflect the marginally stable and itinerant nature of the
neuronal dynamics. Fig. 2C shows the variation over time in the
mean magnitude of network interactions.

Temporal variations in interaction strength produce changes
in the topology of functional networks and thus in the functional
centrality of each node. Fig. 2D shows betweenness centrality
across time, and also in relation to node degree, for selected
areas in the network. For regions that, over longer time periods
(see Fig. 2B), exhibit hub characteristics (e.g., areas V4 and 46),
analyses over shorter time scales reveal substantial variations in
degree and betweenness centrality over wide ranges. The cen-
trality of highly connected non-hub regions (e.g., area V1)
remains low. Hence under spontaneous nonlinear dynamics hubs
engage and disengage across time (‘‘hub dynamics’’).

As patterns of functional connections change, network nodes
gain and lose functional connections (i.e., change degree).
Cross-regional correlations in degree across time reveal the
existence of functional clusters that coordinate their intra- and
inter-group interactions. Fig. 3A shows the pattern of such
correlations obtained for TE networks (average of four simula-
tions), characterized by the presence of two main clusters. One
of these clusters contains mostly visual areas, particularly those
of the ventral stream, whereas the other contains somatosensory
and motor areas as well as portions of the dorsal visual stream.
Both clusters consist of brain regions that are largely contiguous
on the cortical surface, with one cluster restricted mostly to the
occipital and temporal lobes while the other occupies portions of
the parietal and frontal lobes (Fig. 3B). Several areas (e.g.,
parietal area 7a and frontal area 46), although initially grouped
with the occipitotemporal cluster, maintain equally strong cor-
relations with members in both clusters, rendering them ‘‘inter-
mediate’’ articulation points that link the two clusters (see also
ref. 22). Degree correlations are the result of slow fluctuations
in mean TE for the two clusters (Fig. 3C) reflecting alternating
periods of elevated information flow within each of the two
clusters. In control runs with randomized connection matrices
(preserving the in- and out-degree of each node but eliminating
the large-scale clustered architecture of the original matrix) we
found that, although regional TE fluctuations persisted, be-
tween-cluster differences were greatly reduced (Fig. 3D), indi-
cating that clustering in large-scale structural connections is
crucial for the generation of large-scale functional anti-
correlations within our model.

BOLD Correlations and Synchrony. To more closely relate these
patterns of functional connectivity to recent neuroimaging work (8,
10, 11) we used the observed changes in membrane potential across
time in each brain region, in conjunction with a Balloon–
Windkessel hemodynamic model (48–50), to estimate a BOLD
signal for each region. After regressing out global BOLD fluctua-
tions (as in ref. 10), pairwise cross-correlations between the residual
regional signals again reveal two anticorrelated clusters (Fig. 4 A
and B) that correspond closely to those identified on the basis of TE
functional connectivity (Fig. 3 A and B).

Further investigation reveals that BOLD signal and functional
connectivity f luctuations occurring over many seconds are re-
lated to one another (Fig. 4C) as well as to the fast synchroni-

A B

C

D

Fig. 2. Topology of functional networks and hub dynamics. (A) Example of
a functional TE network, calculated using a 240,000 time step data segment
(240 sec). The functional matrix has been thresholded to yield a binary
network with connection density equal to that of the structural network (505
connections). Comparison between structural and functional networks allows
the distinction of true positives (TP functional connections that match existing
structural connections; shown in red), as well as false positives (FP functional
connections absent in the structural matrix; shown in dark red) and false
negatives (FN structural connections absent in the functional network; shown
in yellow). Numerals give the count of TP and FP (TP � FP � 505; FP � FN at this
threshold). (B) Correlation between centrality of each node within structural
and TE functional network (mean of n � 5, obtained from 240-sec data
segments): r2 � 0.78. (C) Time course of TE averaged over the entire network:
960,000 time steps (16 min) windowed into 156 overlapping data segments,
30,000 time steps each, consecutively offset by 6,000 time steps (6 sec). (D)
Corresponding time course for betweenness centrality for two putative hub
regions (area V4, Top, and area 46, Middle) and one non-hub region (area V1,
Bottom). Scatter plots at right show the relationship between degree and
centrality for these nodes across the 156 functional networks.
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zation dynamics of the system (Fig. 4D). Synchronous (phase-
locked) episodes are first identified by calculating the
instantaneous phase difference between the oscillatory dynam-
ics at each node using the phase locking value (26). In our model
(see SI), as in other weakly coupled systems (34), phase differ-
ences are most commonly found to be near 0 radians (in-phase
synchronization) or � radians (anti-phase synchronization). Ep-
isodes of synchronization typically last between 50 and 300 msec

(see SI), a time scale that is consistent with experimental
observations of transient synchronous networks in vivo (3). The
total length of all synchronous episodes within a given 30-sec
time window is correlated (see SI) with the aggregate TE
observed in the network across that period, as well as with the
mean BOLD signal across regions (Fig. 4D; r2 � 0.55). Exam-
ining BOLD synchrony relations region by region we find that,
across consecutive 2-sec time windows, BOLD signal amplitudes

A B C

D

Fig. 3. Anticorrelated functional clusters. (A) Degree correlation matrix capturing cross-regional correlations in gains and losses of thresholded functional
connections. Matrix represents an average over four 960,000 time step (960-sec) runs, sampled as in Fig. 2 C and D. Cluster analysis yields two main clusters (blue,
occipitotemporal; green, parietofrontal). (B) Anatomical location of main clusters in Caret coordinates (51). Areas intermediate in terms of degree correlations
are shaded in light blue (areas STPa, STPp, TH, TF, 7a, and 46). (C) Difference in the mean within-cluster TE over time (for the same run shown in Fig. 2 C and D),
expressed as percentage of mean signal. (D) TE difference profiles for four runs using intact (Fig. 1A) corticocortical connections (Upper), and four runs carried
out in randomized networks preserving in- and out-degree of each node (Lower). Cluster analysis was performed on degree correlation matrices for each separate
run to obtain two main clusters. Clusters were then used to calculate differences in mean TE. Standard deviations, expressed as percent baseline TE, are
significantly different (two-tailed t test, P � 0.005) for the two groups.

A B E

C D

Fig. 4. Estimated BOLD signals and relation to synchrony. (A) BOLD correlation matrix, computed from estimated BOLD time series after regressing out global
BOLD fluctuations and sampled every 2 sec. Matrix represents an average over four 960,000 time step runs (960 sec, as in Fig. 3). (B) Correlation map obtained
by using areas V4 and SII as seed regions, labeling all positively correlated brain regions in either blue (V4) or green (SII). V4 and SII were chosen because they
occupy central positions within their respective clusters. Regions not showing positive correlations, or positively correlated with both seed regions, are shown
in light blue. (C) Scatter plot of global BOLD signal against variations in aggregate network TE, for corresponding 30-sec data segments obtained from four runs
of 960 sec. (D) Scatter plot of global BOLD signal against variations in synchronization. Synchronization is measured as the percentage of phase-locked time steps
(in-phase or anti-phase) across all node pairs. (E) BOLD signal and synchrony shown over a 95-sec data segment recorded from area 7a. Synchrony is calculated
as the total time that area 7a is phase-locked with any of the other nodes in the network.
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are correlated with the time each region spends in synchrony.
These correlations are strongest for high-degree nodes (see SI).
The relationship is lagged by 2–4 sec because of hemodynamic
delays (Fig. 4E).

Functional connectivity, BOLD signal amplitude, and the
propensity to synchronize are thus interrelated within our model.
The fluctuations in functional connectivity and in BOLD signal
that we observe on a slow time scale (�0.1 Hz) are a result of
f luctuations in the aggregate number of transient couplings and
decouplings occurring on a far more rapid time scale (�10 Hz).
Region pairs engaged in long synchronous episodes at a consis-
tent phase tend to be strongly functionally connected (with high
TE), and their BOLD signals tend to be elevated.

Discussion
Simulating neuronal dynamics on a network of large-scale
interregional connections in the macaque cortex allowed us to
investigate functional connectivity patterns at multiple time
scales and to relate them to one another and to their structural
substrate. Fast neuronal dynamics exhibit intermittent synchro-
nization and desynchronization on a time scale of hundreds of
milliseconds, enabling the system to continually explore a rep-
ertoire of functional microstates (35). Slow variations in the
statistics of synchronous coupling give rise to changes in the
strength of directed interactions between regions on a time scale
of seconds. Our model suggests that spontaneous cortical dy-
namics exhibit ongoing changes in the pattern and strengths of
functional coupling and that these coupling events are in turn
related to BOLD signal amplitude. The cortical resting state thus
exhibits rich and interrelated spatiotemporal structure at mul-
tiple scales.

At the slowest time scale (minutes of data) we find that the
aggregate strength of functional couplings between regions is, on
average, a good indicator of the presence of an underlying
structural link. Thresholded functional networks calculated over
long time windows closely matched the original structural con-
nection matrix (Fig. 1 A), with 79% of the true anatomical links
being recovered from the TE analysis (Fig. 2 A and SI) along with
several features of global topology such as centrality. The success
of the TE approach in matching anatomical connections can be
attributed to two factors: (i) its sensitivity to directed (nonre-
ciprocal) interactions and (ii) the ergodicity of the chaotic
neuronal dynamics, which allows the high-dimensional proba-
bility densities required for the calculation of TE to be well
estimated from long time windows.

At an intermediate time scale (6-sec intervals, �0.1 Hz)
significant fluctuations were observed in the strengths of func-
tional coupling. These fluctuations were correlated in time
across regions (Fig. 3), with regions participating in one of two
functional clusters. Furthermore, the same anticorrelated func-
tional clusters were found when analyzing BOLD signal time
series estimated from regional activity (Fig. 4). One cluster
comprises mostly visual regions located in the occipital and
temporal lobes whereas the other cluster contains mainly so-
matomotor and frontal regions. Some regions of high structural
centrality [notably areas 46, 7a, 7b, and STPp, previously labeled
‘‘associational areas’’ (36)] participated in both clusters, whereas
others (e.g., V4 and SII) occupied central positions within their
respective clusters.

At the fastest time scale analyzed (�10 Hz) we observed
intermittent synchronization and desynchronization between
brain regions. Signals were typically locked at 0 or � radians
phase difference for between 50 and 300 msec. At weak inter-
regional coupling, global synchronization never occurs. Instead
the system’s dynamics consists of a very large set of metastable
states similar to what is observed in other classes of high-
dimensional chaos [e.g., chaotic itinerancy (37)] that exhibit
multiscale temporal structure (38).

The link between fluctuations in transfer entropy and, at a similar
time scale, in resting-state fMRI time-series appears to be mediated
by the relationship between the synchronization of neuronal dy-
namics and the mean activity of neuronal populations. This obser-
vation is consistent with recent simulations (39), which showed that
increased synchronization cannot be divorced from increases in
mean firing-rate. Importantly, it suggests that empirical fMRI
signals may reflect the time-varying fast synchronization of popu-
lation dynamics.

Our model currently does not incorporate any time variation
in sensory inputs or in the efficacy of anatomical links, and yet
we find spontaneous neuronal dynamics that are structured at
multiple time scales. The model therefore suggests that the
combination of fast and intermittently synchronizing neuronal
dynamics and a clustered anatomical substrate may account for
two recently observed phenomena: (i) large-scale organization
and the existence of hubs in functional connectivity networks
(17–20) and (ii) functional clusters that are anticorrelated on a
time scale of seconds (8, 10) and possibly bridged (10) via areas
in parietal cortex (e.g., area 7a) and frontal cortex (e.g., area 46).
On the basis of the model, we predict that individual differences
in the strength and location of resting state functional clusters
will correlate strongly with individual differences in the topology
and efficacy of large-scale corticocortical pathways now detect-
able using neuroimaging technologies (40).

Methods
Connection Data Set. We examine a large-scale anatomical data
set, referred to in this article as ‘‘macaque neocortex,’’ consisting
of a binary connection matrix of brain regions (listed in SI)
connected by interregional pathways. Macaque neocortex (Fig.
1A) is an updated network matrix generated following the
parcellation scheme of Felleman and Van Essen (36), including
visual, somatosensory and motor cortical regions as well as their
interconnections (which had not been included previously). The
data were manually collated in the CoCoMac database from
published tracing studies according to standard procedures (23,
41). Subsequently, all relevant data were translated algorithmi-
cally to the Felleman and Van Essen map using coordinate-
independent mapping (42, 43). After resolution of redundant
and inconsistent results a binary connection matrix with n � 47
nodes (vertices) and K � 505 edges (connections) was generated.

Graph Theory Methods. All graph-theoretic analyses were con-
ducted on binary matrices. Where necessary, weighted matrices
were binarized by thresholding in such a manner as to maintain
a constant connection density across networks. The clustering
coefficient of a node (15) is calculated as the number of all
existing connections between the node’s neighbors divided by
the number of all possible such connections. In analogy to the
clustering coefficient, we define the flow coefficient as the
number of all paths of length 2 linking neighbors of a central
node that pass through the node, divided by the total number of
all possible such paths (see SI).

Central nodes in a network are those that have structural or
functional importance, for example, by serving as way stations for
network traffic (analogous to bridges or connectors) or by influ-
encing many other nodes via short paths (Fig. 1C). The betweenness
centrality of a node is defined as the fraction of shortest paths
between all pairs of nodes that travel through that node (27) and
was calculated here by using algorithms developed by D. Gleich
(www.stanford.edu/�dgleich/programs/matlab_bgl; ref. 44).

Structural motifs (subgraphs) of size M consist of M nodes and
a set of edges (maximally M2 � M, for directed graphs, minimally
M � 1 with connectedness ensured). In this study we analyzed
macaque neocortex for motifs of size M � 3 (Fig. 1D).

Statistical evaluation of our results requires the design of
appropriate null models (45). Such models are not uniquely
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defined, as statistical comparisons may be carried out relative to
many different random models that preserve particular subsets
of structural parameters. In this study we generated populations
of control (‘‘random’’) networks (n � 1,000) using a Markov
switching algorithm that preserves degree sequences (46). Lat-
tice networks used as additional controls for data shown in Fig.
1D were created as previously described (16).

TE. TE was estimated (47) from Gaussian-resampled time series
(see SI) discretized into one of 32 bins of uniform width.
Sampling bias was corrected by subtraction of a baseline value
for each node pair. The baseline for each pair was equal to the
TE value obtained from time-shifted data, at a single shift of
4,000 time steps or averaging over shifts of 3,000, 3,500, 4,000,
4,500 and 5,000 time steps (see SI).

TE (25) quantifies the deviation from the generalized Markov
property: p(xt�1� xt) � p(xt�1� xt,yt) where xt is the bin assignment
of time series x at time t. If conditioning on Yt alters the transition
probabilities of Xt, then the assumption of a Markov process is
invalid. The incorrectness of the assumption is expressed by the
TE, formulated as the Kullback–Leibler entropy:

T Y ¡ X � � p�xt�1, x t, yt	 log
p�xt�1 � x t, yt	

p�xt�1 � x t	

where the index Y 3 X indicates the influence of Y on X. TE is
nonsymmetric and can thus detect the directed exchange of
information (e.g., information flow or causal influence) between
x and y.

BOLD Signal Estimation. Closely following ref. 48 in employing the
Balloon–Windkessel hemodynamic model (49, 50), we estimated a
BOLD signal for each region based on the local neuronal activity
output by our neural mass model. The estimated BOLD signal was
calculated independently for each region, disregarding potential
effects due to blood flow between spatially adjacent brain regions.
Equations and parameters relating neuronal activity and vasodila-
tory signal with blood inflow, volume, and deoxyhemoglobin con-
tent are taken directly from ref. 48. The main model input,
‘‘neuronal activity,’’ is taken to be the absolute value of the time
derivative of the mean excitatory membrane potential within each
brain region (glutamate turnover).
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