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Abstract

We report analytical and computational investigations into the effects of base time on the diagnosticity of two popular theoretical

tools in the redundant signals literature: (1) the race model inequality and (2) the capacity coefficient. We show analytically and without

distributional assumptions that the presence of base time decreases the sensitivity of both of these measures to model violations. We

further use simulations to investigate the statistical power model selection tools based on the race model inequality, both with and

without base time. Base time decreases statistical power, and biases the race model test toward conservatism. The magnitude of this

biasing effect increases as we increase the proportion of total reaction time variance contributed by base time. We marshal empirical

evidence to suggest that the proportion of reaction time variance contributed by base time is relatively small, and that the effects of base

time on the diagnosticity of our model-selection tools are therefore likely to be minor. However, uncertainty remains concerning the

magnitude and even the definition of base time. Experimentalists should continue to be alert to situations in which base time may

contribute a large proportion of the total reaction time variance.

r 2007 Elsevier Inc. All rights reserved.
1. Introduction

The incipient experimental psychology of the nineteenth
century began to unravel the mechanisms responsible for
sensory, cognitive and motor behavior. A great many of
the strategies used response times along with various
experimental conditions intended to assay the contribu-
tions of the psychological processes of interest in that
period. A redoubtable challenge was then and is now, how
to segregate the times of concern—for instance, an
arithmetical computational mechanism—from those dura-
tions coming before or after. Early sensory preparation
comes before, motor preparation and execution come after.
Both of these contribute to what is known as the base time

component of a reaction time.
Certain methodologies—such as Donders’ (1869) method

of subtraction, Sternberg’s (1969) additive factors method

and the later generalizations (Schweickert, 1978; Townsend
& Ashby, 1983; Townsend & Schweickert, 1989)—have
e front matter r 2007 Elsevier Inc. All rights reserved.
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witnessed some success in bypassing this obstacle. None-
theless, the presence of the base time component of a
response time continues to impede progress. Thus,
investigators rarely fit response time distributions that
account for a realistic probability distribution of the base
time. In most cases, a constant is simply employed as the
base time; sometimes it is entirely omitted.
Another approach is to call into play transform

techniques (e.g. Fourier or Laplace transforms) that can
be used, in principle, to segregate the base time from the
processing distribution under study (Goldstone, 2000;
Kohfeld, Santee, & Wallace, 1981). However, these
strategies are prone to grave difficulties and risk (Sheu &
Ratcliff, 1995; Smith, 1990). It is also known that the form
of the base time distribution has consequences for
parameter-fitting in numerous choice models (Ratcliff &
Smith, 2004; Ratcliff & Tuerlinckx, 2002). We cannot
review these rather vast subjects much less solve all the
problems.
Our goal here is to investigate the manner and magnitude

of the contamination by base time of two central constructs
in elementary cognitive process theory and methodology:
the race model inequality (Miller, 1982) and the capacity
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Fig. 1. Schematic of a standard redundant signals model.
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coefficient (Townsend & Nozawa, 1995). Our investigation
is latched to a certain, but very popular, paradigm centered
on response times: the redundant signals design (RSD).
2. The RSD

In a RSD experiment we compare the reaction times to
target stimuli presented singly with the reaction times to
both target stimuli presented in combination. Consider, for
the sake of concreteness, an audiovisual redundant signals
experiment.1 In the simplest case we will have three
conditions: (1) presentation of an audio stimulus, (2)
presentation of a visual stimulus and (3) presentation of
audio and visual stimuli at the same time. Subjects are
instructed to respond as soon as they detect an audio target
or a visual target or both at the same time. In other words
they are instructed to respond as soon as they detect a
signal in either modality, regardless of what is occurring in
the other modality. Trials in the first two conditions are
called single target (SS) trials; trials in the third condition
are called redundant signal (RS) trials.

There are two primary types of RSDs; the classification
is based on what is presented in the irrelevant modality on
SS trials. In the first type of RSD, the null stimulus is truly
null; so on a single-signal trial in which the target appears
in the visual modality, the experimenter might present
silence on the (irrelevant) auditory modality. In the second
type of RSD, the experimenter substitutes a distractor

stimulus for the target. In this design it would not be
silence, but rather a non-target sound presented in the
(irrelevant) auditory modality when the target is visual.

In both kinds of RSD, and for a wide variety of
experimental designs, it has frequently been observed that
1Nothing that follows hinges on this particular choice. The results

presented here could apply to any experimental design in which a subject

monitors multiple sources of information for a rapid response.
reaction times are stochastically faster on the RS trials than
on the single signal (SS) trials (Raab, 1962; Mordkoff &
Miller, 1993; Westendorf & Blake, 1988). In other words,
subjects are faster to respond to a flash and a beep
presented together than they are to respond to the flash or
beep presented alone. We label this kind of result—in
which a significant speed superiority is found in moving
from a single target condition to a multiple target
condition—as a redundant signals effect.

2.1. Models explaining the RSs effect

In the search for an explanation of this phenomenon, it is
natural to begin by positing some kind of interaction
between the audio and visual modalities. Yet it has long
been known that if the internal representation of the
stimulus dimensions (features, etc.) is probabilistic, then
RS facilitation can occur via statistical considerations
alone (see e.g. Raab, 1962). We now formulate a frame-
work in which to explicate the main aspects and questions
relating to RS effects (see Fig. 1):
(1)
 We assume that the different modalities are processed
in separate channels, along which evidence is accumu-
lated toward the completion of a particular signal
detection task. The audio channel accumulates evidence
toward detection of audio targets; the visual channel
accumulates information toward detection of visual
targets. We further assume that the signals impinging
on the channels are processed in parallel: one channel
does not have to wait for the other channel to finish
before it can begin processing its input (but see
Townsend & Nozawa, 1997).
(2)
 We assume that the rate of processing along each
channel is invariant across the SS and RS conditions
(the audio signal is processed in the same way
regardless of whether a visual signal is also presented
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on that trial, and vice versa). This assumption, known
as context invariance,2 is crucial, because it is the
theoretical link that justifies our comparison of data
gathered in the SS condition against data gathered in
the RS conditions.
(3)
 We assume that on the RS trials there is a parallel race

between the audio and the visual processing channels.
Successful completion of the signal detection process
on either channel is sufficient to produce a motor
response, and so the reaction time measured on an RS
trial will simply be equal to the process completion time
of the faster channel on that trial. This assumption is
also known as the assumption of a minimum-time

stopping rule, since the completion time of the entire
system is the minimum of the completion times of the
individual channels.
(4)
 We sometimes assume that the signals impinging on
each channel are processed independently: the rate at
which the audio signal is processed is not affected by
the rate at which the visual signal is processed on that
trial, and vice versa.
A model that satisfies assumptions 1 through 3 is
commonly referred to as a race model. A model that
satisfies assumptions 1 through 4 is a particular type of race
model; it is known, in terms of the taxonomy of
information-processing models (Townsend & Ashby,
1983; Townsend & Nozawa, 1995), as an Unlimited
Capacity, Independent, Parallel (UCIP) model with a
minimum-time stopping rule. In this paper, when we say
race model we mean any model satisfying assumptions 1
through 3. When we say UCIP model we mean any model
satisfying assumptions 1 through 4, i.e. we mean a race
model with independent channels.3

We model the cognitive processing times on each channel
using a non-negative random variable; times on the audio
channel are modeled with the variable A and times on the
visual channel are modeled with the variable V. These
variables are theoretical quantities. The variables govern-
ing the empirical reaction time in each condition are written
as RTA and RTV , respectively. When base time is neglected
in the model, then we assume that each measured reaction
time is a sample realization of the corresponding theore-
tical quantity:

Audio SS trial : RTA ¼ A;

Visual SS trial : RTV ¼ V ;

Audiovisual RS trial : RTAV ¼ minðA0;V 0Þ;

(1)

where the random variables A¼df A0 and V¼df V 0. The
notation X¼df Y means that ‘‘X and Y have the same
t is also referred to as context independence (Colonius, 1990) and is

ed to the notion of capacity that we will discuss in Section 4.

he usage of these terms in the literature has not always been

istent and careful. Most of our discussion in this paper concerns race

els in general, although later on we do restrict our attention to

pendent-channel (i.e. UCIP) race models.
distribution functions’’. See Appendix D for a complete list
of notations and abbreviations.
Now any race model (including the UCIP model) can

account for the RSs effect at the level of mean reaction
times; the observed speedup in the RS condition is a simple
consequence of the fact that for any two random variables,
E½minðA;V Þ�pminðE½A�;E½V �Þ from which it follows that
we will experimentally observe E½RTAV �pminðE½RTA�;
E½RTV �Þ. However, of all race models, the UCIP model
provides the most parsimonious explanation since it does
not require any channel interactions and yet still produces
a RSs effect.
A major step forward occurred when Jeffrey Miller

(Miller, 1978, 1982) pointed out that all race models had to
satisfy a simple yet powerful inequality. At the time,
context invariance was not made explicit as a necessary
assumption; this theoretical gap was filled independently by
Luce (1986) and Ashby and Townsend (1986). Slightly
modifying Miller’s original development to make this
assumption more evident we see the argument as follows.
Each reaction time we record is understood to be a

sample from one of the random variables RTA ¼ A,
RTV ¼ V or RTAV ¼ minðA0;V 0Þ. From these data we
can estimate the cumulative distribution functions FRTA

¼

PðRTAptÞ,FRTV
¼ PðRTVptÞ and FRTAV

¼ PðRTAVptÞ.
Miller (1982) showed that, for any race model,

FRTAV
ðtÞ ¼ FminðA0;V 0ÞðtÞ

¼ FminðA;V ÞðtÞ ðCIÞ

¼ PðminðA;V ÞptÞ

¼ PðAptÞ þ PðVptÞ � PðApt and VptÞ

¼ FAðtÞ þ F V ðtÞ � PðApt and VptÞ

¼ FRTA
ðtÞ þ F RTV

ðtÞ � PðApt and VptÞ. ð2Þ

Notice that we used context invariance to obtain the line
labeled (CI). Context invariance is the assumption that the
channel process variables are invariant across SS and RS
trials, i.e. A0¼df A and V 0¼df V . The assumption of context
invariance provides a theoretical bridge between our RS
and our SS data. Following from the final line above, we
simply notice that we are subtracting a positive quantity
from the right-hand side, so that

FRTAV
ðtÞpF RTA

ðtÞ þ FRTV
ðtÞ. (3)

We emphasize that this inequality holds for any race
model, not only for the independent (UCIP) case. Eq. (3) is
known variously as ‘‘Miller’s Race Model Inequality’’ or
simply as the ‘‘Race Model Inequality’’ and has been
widely used in psychophysics to test for interactions
between posited perceptual processes. Maris and Maris
(2003) have recently developed a non-parametric test which
provides a principled means of determining the level of
statistical significance of any violations observed empiri-
cally. Note that if the inequality is violated we falsify not
only the UCIP model, but in fact any race model of task
performance, since the race model inequality is expected to
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hold regardless of the dependence between A and V. In the
event that violations are detected, we can test alternative
hypotheses that posit one or another sort of coactivation

between process channels (Miller, 2004; Schwarz &
Ischebeck, 1994; Townsend & Wenger, 2004).

Bear in mind, however, that the race model inequality
can hold in the absence of independence, and also that it
can fail to hold for a race model in which one or other
assumptions are violated. In real-time functioning systems,
dependencies can readily alter the marginal processing time
distributions, thus contravening context invariance. In fact,
it was shown (Townsend & Wenger, 2004) that mutually
inhibitory or mutually facilitatory systems very often
produce, in the first case, marginal cumulative distributions
less than the single target distributions and in the second
case, marginal cumulative distributions greater than the
single target distributions.

The race model inequality is a conservative test (Patch-
ing & Quinlan, 2004; Schwarz & Ischebeck, 1994) but it has
been, and continues to be, widely employed in the analysis
of reaction time data. It is therefore important that we
understand the implications of base time for the diagnos-
ticity of this test.

3. Base time

3.1. The what and where of base time

In the explication above we assumed that our measured
reaction times RTA;RTV and RTAV were samples of
the process variables A, V and minðA;V Þ. But it is clear
that any observed reaction time will comprise not only
the completion times of the cognitive processes in which
we are interested, but also additional components such as
(a) the time taken for the basic sensory system to transmit
to higher processing centers and (b) the time taken to
prepare and execute the motor response. The time taken
to perform these other functions is commonly called
base time. 4

Our special concern in this paper is the theoretical and
practical impact of base time in race models of reaction
time. For instance, we want to know what happens to the
validity of Eq. (3) when the empirically measured RTA is
not a sample from the random variable A but is rather a
sample from Aþ BA where BA is a random variable
modeling base time. We make the canonical assumption
that base time is invariant across all experimental condi-
tions (SS-Audio, SS-Video and RS) and also independent

of our channel process variables A and V (Luce, 1986;
Ulrich & Giray, 1986). These assumptions are a kind of
context invariance for base time; if base time is really a
proxy for a functionally distinct motor response time then
they are plausible. There are, however, some significant
methodological and ontological concerns with these
4It is also referred to as ‘‘residual time’’ (e.g. Luce, 1986) and ‘‘non-

decisional time’’ (e.g. Ratcliff & Tuerlinckx, 2002).
assumptions (Dzhafarov, 1992), and we return to this issue
in Section 5.1.
Following Ulrich and Giray (1986) and with reference to

Fig. 2, our race model incorporating base time is

Audio SS trial RTA ¼ Aþ BA;

Visual SS trial RTV ¼ V þ BV ;

Audio visual RS trial RTAV ¼ minðA0;V 0Þ þ BAV ;

(1*)

where A¼df A0, V¼df V 0 and BA¼df BV¼df BAV . Notice that
we allow for the possibility of a dependence between A0 and
V 0, so this is a general race model. Also notice that here,
and for the rest of this paper, we assume that the
distribution of the base time is invariant across conditions
so that all base time variables follow share an identical
density function, f BðtÞ. We will further assume the notation
that the variables X, X 0, X 00, etc. are identically and
independently distributed. These variables are introduced
in order to make clear that although the variables across
conditions are equal in distribution (usually due to context
invariance), their realizations are entirely independent. See
Appendix A for some clarifications and caveats concerning
the use of random variable notation.
For the model just described, the following chain of

inequalities is provided in the literature:

FminðA0;V 0ÞþBAV
ðtÞ ð4aÞ

pFminðAþBA ;VþBV Þ
ðtÞ ð4bÞ

p FAþBA
ðtÞ þ FVþBV

ðtÞ. ð4cÞ

The first inequality, (4a)p(4b), was stated by Ulrich and
Giray (1986) under the assumption that all the random
variables are independent; it was later proven by Colonius
(1990) in the more general case in which dependence
between A and V is allowed. The second inequality,
(4b)p(4c) is just the race model inequality, Eq. (3), with
some relabeling of variables.
Suppose now that we were to simulate a UCIP model with

a base time component, i.e. we were to simulate the system
depicted in Fig. 2 with the stipulation that variables A and V

are independent. Then following from Eq. (4), which is
expressed in terms of theoretical process variables, we expect
the following properties to emerge in our simulation data:

FRTAV
ðtÞ ð5aÞ

pFminðRTA ;RTV Þ
ðtÞ ð5bÞ

pFRTA
ðtÞ þ FRTV

ðtÞ. ð5cÞ

We see that the inequality (5a)p(5c) is identical to the race
model inequality (3); the only difference is that the quantities
in Eq. (5) incorporate base time while those in Eq. (3) do not.
Clearly, then, violations of the race model inequality falsify
race models whether or not the race models include base time
(Ulrich & Giray, 1986). What is not so evident, and what we
demonstrate in Section 3.2, is that the presence of base time
serves to decrease the maximum sensitivity of the race model
inequality (and related) tests to the detection of race model
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Fig. 2. Schematic of a redundant signals model including base time as in Eq. (1*).

J.T. Townsend, C.J. Honey / Journal of Mathematical Psychology 51 (2007) 242–265246
violations. More precisely: if we begin with a system that
does not include base time but does contain a dependence
between A and V such that the system produces violations of
the race model inequality, then the incorporation into that
system of base time components BA;BV and BAV can only
serve to reduce the magnitude of the exhibited violations or
to mask them entirely.

We emphasize that it is the ideal (infinite sample)
sensitivity that is impacted in this way by the introduction
of base time. The effects on test diagnosticity are more
complicated when only small data samples are available;
some exploratory results concerning power and false alarm
rates are provided in Section 3.4.
5If base time comprises mostly motor response time then we have reason

to believe this (Luce, 1986; Meijers & Eijkman, 1974). Ratcliff and

Tuerlinckx (2002) make a similar assumption when they calculate the

effects of base time on the estimation of the parameters of diffusion

models—see their Figure 11.
6Here we follow the notation of Colonius and Diederich(2006) who

analyze the closely related race function:

R ¼ FRTAV
ðtÞ �min½F RTA

ðtÞ þ FRTV
ðtÞ; 1�.

Unfortunately the convolution analysis we present here does not appear to

have direct applicability to their approach because of this definitional

difference.
3.2. Base time as a filter

Given any two independent random variables, say X and
B, whose probability density functions f X ðtÞ and f BðtÞ are
known, we can calculate the density function, f XþBðtÞ, of
the variable X þ B by convolution:

f XþBðtÞ ¼

Z 1
�1

f X ðsÞf Bðt� sÞ ds ¼ f X � f BðtÞ.

When both X and B are non-negative variables this
equation can be rewritten as

f XþBðtÞ ¼

Z t

�1

f X ðsÞf Bðt� sÞ ds ¼ f X � f BðtÞ

and since random variables modeling process times are
non-negative we will assume this simpler convolution form
for the remainder of this paper.

It is also well known (e.g. Townsend & Ashby, 1983) that
we can obtain an analogous result for the cumulative
distribution functions:

FXþBðtÞ|fflfflfflffl{zfflfflfflffl}
Output

¼

Z t

�1

FX ðsÞf Bðt� sÞ ds ¼ FX|{z}
Input

� f BðtÞ|ffl{zffl}
Kernel

.

When an input function is convolved with another function
(especially a unimodal function with smaller support) then
it is usual to refer to the simpler function as a kernel and
to view the output of the convolution transformation as a
filtered version of the input. We say that FX ðtÞ is being
filtered by f BðtÞ, and the terminology is appropriate
because f B, the probability density function of our base
time variable, is likely to have a small half-width and to
be unimodal.5 Kernels of this type can be easily understood
to act as local averaging mechanisms: each point of the
output function is a kernel-weighted average of corre-
sponding points in the input function. We now proceed
to apply this reasoning to the quantities involved in our
RSs paradigm.
When we test the race model inequality, Eq. (3), we are

interested in the roots of the race model test function

R�ðtÞ � F AV ðtÞ � F AðtÞ � FV ðtÞ, (6)

where A, V and AV are the ‘‘true’’ cognitive process times
in the SS-audio, SS-video and RS conditions, respectively.
If R�ðtÞ40 for any time t then the race model inequality is
violated.6Unfortunately we do not observe R�ðtÞ. Instead
we observe the empirical quantity

R�BðtÞ � F RTAV
ðtÞ � F RTA

ðtÞ � FRTV
ðtÞ. (7)
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There is, however, a simple way of relating the theoretical
R�ðtÞ and the empirical R�BðtÞ:

R�BðtÞ � FRTAV
ðtÞ � FRTA

ðtÞ � FRTV
ðtÞ

¼ FAVþBAV
ðtÞ � FAþBA

ðtÞ � F VþBV
ðtÞ

¼

Z t

�1

F AV ðsÞf Bðt� sÞ ds

�

Z t

�1

FAðsÞf Bðt� sÞ ds�

Z t

�1

F V ðsÞf Bðt� sÞ ds

¼

Z t

�1

½FAV ðsÞ � FAðsÞ � F V ðsÞ�f Bðt� sÞ ds

¼

Z t

�1

R�ðsÞf Bðt� sÞ ds.

¼ R� � f BðtÞ. ð8Þ

The linearity of the convolution operator and the assump-
tion that all base time variables are described by a common
density function f BðtÞ, provide us with the result that
observed R�BðtÞ is a filtered version of the ‘‘true’’ quantity
R�ðtÞ upon whose properties we would like to base our
model selection decisions.

By definition we know that R�ð0Þ ¼ 0 and that asymp-
totically we have R�ð1Þ ¼ �1. We want to know whether
there is some positive time t� for which R�ðt�Þ40 because
the existence of such a time would constitute a violation of
the race model inequality.7

We can use a standard result from the theory of function
convolution (Kecs, 1982) to demonstrate that the max-
imum positive value of R�ðtÞ is always greater than the
maximum positive value R�B. More generally, using
Hölder’s Inequality, it can be shown that when we filter
an input function with a probability density function the
output function will always have a smaller absolute
magnitude at its extrema than the input function. The
main theorem that we need is from the theory of
convolution operators (Kecs, 1982).

Lemma 1. If f 2L1ðRnÞ and g is bounded on R then the

convolution f � g exists, is bounded, continuous and

kf � gkL1pkf kL1kgkL1 , (9)

where kf kLp denotes the Lipschitz p-norm of the function f ,
and where L1ðRnÞ denotes the set of Lebesgue-integrable

functions on Rn.

Proof. See Corollary 2 in Kecs (1982, p. 66). &

This lemma is in fact a special case of a more general
theorem that provides a bound on the Lp-norm of a
convolution product, with the bound depending on the Lp-
norms of the two functions being convolved.

Now we apply this bound to our purpose. First, we
choose f ¼ f BðtÞ since the density function f B 2L1ðRnÞ

with the additional property that
R1
�1
jf BðtÞj dt ¼
7Subject, of course, to some statistical test for the significance of this

observed positivity.
kf BkL1 ¼ 1. Secondly, we choose g ¼ R�ðtÞ since R�ðtÞ is
bounded. Then, recalling that kgkL1 ¼ maxtjgðtÞj and
substituting in Eq. (9) we obtain

max
t
jR�BðtÞj ¼ kR

� � f BðtÞkL1

pkf BkL1kR
�kL1

¼ kR�kL1

¼ max
t
jR�ðtÞj.

This result does not yet get us what we want, because, as a
result of the fact R�ð1Þ ¼ �1, we will always have
max jR�ðtÞj ¼ 1. This makes the bound too loose to
significantly constrain the height of any region of
positivity, which is usually much smaller than 1. However,
the previous derivation demonstrates the general principle
that a local maximum of a bounded function will be filtered
into a smaller local maximum when the kernel is a
probability density function. This makes sense, since we
expect a local averaging process to flatten any peaks in the
input function. It will take a little more work in order to
express this mathematically.
Suppose that the function R�ðtÞ ¼ gðtÞ is indeed positive

over some range of t before returning to its asymptote at
gð1Þ ¼ �1. We want to know what the filtering process
does to the height of this ‘hump’ in g. In order to do so, we
first notice that we can decompose any function g into
positive and negative pieces

gþðtÞ ¼
gðtÞ if gðtÞ40;

0 otherwise;

and

g�ðtÞ ¼
gðtÞ if gðtÞo0;

0 otherwise;

such that gðtÞ ¼ gþðtÞ þ g�ðtÞ. We will need the following
simple result:
Lemma 2. Let f ; g 2 L1ðRÞ. Let f ðtÞX08t 2 R. Then

ðf � gÞþpf � gþ

on the entire domain R.
Proof.

f � g ¼

Z t

�1

f ðsÞgðt� sÞ ds

¼

Z t

�1

f ðsÞgþðt� sÞ dsþ

Z t

�1

f ðsÞg�ðt� sÞ ds

p
Z t

�1

f ðsÞgþðt� sÞ ds since f ðsÞX0. ð10Þ
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Therefore

½f � g�þp
Z t

�1

f ðsÞgþðt� sÞ ds

� �þ

¼

Z t

�1

f ðsÞgþðt� sÞ ds again since f ðsÞX0

¼ f � gþ: & ð11Þ

Now if the kernel f ðtÞX0 for all t, as is the case for any
density function that models reaction times, then we have

max
t
fðf � gÞþgpmax

t
ff � gþg ð12aÞ

pmax
t
fgþg, ð12bÞ

where the first line follows from Lemma 2 and the second
line follows from our convolution magnitude bound,
Lemma 1. This can all be brought together as follows:
9Note that filtering using the Dirac Delta function corresponds to the

situation in which base time has zero variance so that f BðtÞ ¼ dðt� mÞ.
Theorem 3. When a processing system contains a base time

component that can be modeled additively (i.e. via convolu-

tion of existing cdf’s with a density function), this component

tends to decrease the maximal height of any region of

positivity in our empirically obtained race model test

function, R�B. In other words, maxtfðR
� � f BÞ

þ
gp

maxtfðR
�Þ
þ
g. The presence of base time thus tends to

decrease the magnitude (i.e. maximum height) of any

observed race model violations.8

This result informs us about the maximum height of the
positive component of the race model test function. We
now move on to consider the area under the positive
component of the race model test function. In doing so, the
first result we employ is a standard relationship from the
theory of convolution, relating the integral of two
functions and the integral of their convolution:

Lemma 4. Let f ; g 2 L1ðRnÞ. Then f � g exists almost

everywhere andZ 1
�1

f � gðxÞ dx ¼

Z 1
�1

f ðxÞ dx

Z 1
�1

gðxÞ dx.

Proof. This result follows quite directly from the definition
of convolution and an application of Fubini’s Theorem.
A proof can be found as Proposition 3 in Kecs (1982,
p. 62). &

As before, we decompose g into positive and negative
components, and then the results from Lemmas 2 and 4
can be applied to show that the area of a region of
positivity (i.e. the integral of gþ) in the output function is
always less than the area of the corresponding regions in
8It is possible that our observed function R�B contains more than one

positive local maximum. If this were to occur then the result would imply

that the largest of all the maxima in the output function, R�B, would still be

smaller than the largest of all the maxima in the input function, R�.
the input function:Z 1
�1

ðf � gÞþðxÞ dx

p
Z 1
�1

f ðxÞ � gþðxÞ dx from Lemma 2

¼

Z 1
�1

f ðxÞ dx

Z 1
�1

gþðxÞ dx from Lemma 4

¼

Z 1
�1

gþðxÞ dx . ð13Þ

This last result can be summarised as:

Theorem 5. When a processing system contains a base time

component that can be modeled additively (i.e. via convolu-

tion of existing cdf’s with a density function), this component

tends to decrease the total area of positivity in our

empirically obtained race model test function, R�B. In other

words,
R1
�1
ðR� � f BÞ

þ dtp
R1
�1
ðR�Þþ dt. The presence of

base time thus tends to decrease the magnitude (i.e. area)
of observed race model violations.

Theorems 3 and 5 are our central analytical results about
the impact of base time on model-selection tools based on
additive relations between reaction time CDF’s. These
results solidify our intuitions about what happens when we
add a base time ‘filter’ to our statistical signature, the race
function R�. See Figs. 4 and 5 for examples of these effects.
Typically, the base time filter smoothes functions and
squashes them toward the ordinate axis.
Consider, at one extreme, the Dirac Delta function.

Filtering with dðt� aÞ does not alter the shape of the
original function at all, but simply produces an output that
is phase shifted a units. At the other extreme we might filter
using a density function which is a constant height h over
an interval of width 1=h; filtering with this function
produces, for each time T, the arithmetic mean of the
input function over the range ½T � h;T �. If h is small then
the output will be a strongly smoothed version of the
input.9

As a rule of thumb,10 the flatter and wider the kernel
function, the more extreme the smoothing effect that is
produced by convolution. If base time has a large variance
then its probability density function might well be a flat,
wide kernel. This means that violations of the race model
inequality will be more difficult to detect in data the greater
the variance of the base time. In fact, it is possible for the
presence of base time to have a large enough effect that a
theoretical R�ðtÞ exhibiting race model violations shows up
empirically as an observed R�BðtÞ which does not. In other
Filtering with a constant function corresponds to the base time variable

following a uniform distribution.
10In general the effects can be quite subtle and will depend on the shapes

of all the functions involved, but here we limit ourselves to relatively

smooth and symmetrical functions.
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words, it is sometimes possible to entirely ‘filter away’ a
region of positivity in R�ðtÞ.

3.3. Quantitative estimates of smoothing effects

To provide some more intuition, Figs. 3, 4 and 5 give an
idea of what filtering effect sizes might look like in a
standard experimental setting. We assume the form of
realistic ‘‘true’’ cognitive process time distributions that fix
the value of R�ðtÞ as in Eq. (6) and we further assume a
realistic base time distribution so that we can calculate
R�BðtÞ as in Eq. (7). Any difference between R�ðtÞ and R�BðtÞ

must then be due to contamination of our data by base
time, and the magnitude of the difference informs us of the
magnitude of the contamination effect. Specifically, we
chose

Processing time on redundant trials : AV is distributed

as Nð330; 40Þ;

Processing time on audio SS trial : A is distributed

as Nð410; 40Þ;

Processing time on visual SS trial : V is distributed

as Expð 1
500
Þ;

Base time components BA¼df BV¼df BAV are distributed as Nð150; sÞ.

These distributions were chosen so that the means and
variances would be somewhat realistic for a RSs experi-
ment, and also so that the function R� would exhibit a
change of sign; the particulars of our distributional choices
are less important than the fact that the R� and R�B curves
would appear typical to an experimentalist. Modeling
process times using normal distributions are unrealistic
Fig. 3. The output function, R�B ¼ R� � f B shown as a function of the

common standard deviation of the base time components BA;BV and BAV .

When s ¼ 0 the function f � g exhibits a region of positivity near

t ¼ 500ms. For larger s the function f � g is negative definite; the region

of positivity has filtered away. Notice how the smoothing effect of the

convolution operation increases as we increase s.
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Fig. 5. The kernel g is a Normal density function with mean m ¼ 150ms

and standard deviation s ¼ 50ms; we notice that convolution with kernel

g does indeed mask the positivity in the original function f.
insofar as it allows for negative times. However, even for
the highest variance parameter choices we use, negative
reaction times occur on fewer than 0.1% of trials.
In Fig. 3 we illustrate the effects of varying s, the

standard deviation of the base time variable. Figs. 4 and 5
provide more detail, showing the input function, the kernel
and the output function for two particular values of s. In
Fig. 4 the kernel is a Normal density function with mean
m ¼ 150ms and standard deviation s ¼ 15ms; the filtering
process does not mask the positivity in the original
function. In Fig. 5 we see the same input function, but
now the filter is a Normal density function with m ¼ 150ms
and s ¼ 50ms; this wider, flatter kernel does indeed mask
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Fig. 6. The output function, R�B ¼ R� � f B shown as a function of the

standard deviation of the base time variable. The base time is Weibull

distributed with scale parameter 200 and a varying shape parameter. The

smoothing effect of the convolution operation increases as we increase s in

a very similar manner to the effect produced by the Gaussian kernel.
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the positivity in the original function.11 In Fig. 3 we see the
convolution output, R�B ¼ R� � f B, plotted against the
standard deviation, s, of the filter.

We also performed simulations to examine the smooth-
ing effects of uniform and Weibull distributions, while
retaining the same distributions on channels A, V and AV

as described above. For both Weibull and uniformly
distributed base time kernels the results were very similar
to what was obtained using the Gaussian kernel. Fig. 6, for
example, shows the effects of smoothing using a Weibull-
shaped kernel with scale parameter 200ms and a varying
shape parameter. The results are plotted as a function of
the standard deviation of the Weibull kernel for easier
comparison with Fig. 3. The equivalence across distribu-
tion types is suggestive that, for the parameter ranges
relevant to RSDs, the smoothing effects depend only
weakly on the functional form of the base time distribu-
tion. This is unsurprising since, as pointed out by Ratcliff
and Tuerlinckx (2002), the variance of the base time is
typically much smaller than the variance of the processing
times; this implies that the kernel will only have a ‘local’
smoothing effect, and so its precise shape is less important.

It is apparent that wider filters do indeed produce larger
smoothing effects. It is also apparent that asymmetric
kernels can produce different deformations of the input
functions, but these effects will depend on the shapes of
both the kernel and the function that it is deforming. The
11When considering whether a given filter can mask all traces of

positivity in the original R�ðtÞ, it is worth considering the amount of

negativity in R�ðtÞ that is present before the t-value at which the positivity

first emerges. The way that a filter masks a positive region is by averaging

that positive region with a negative region. If these negative regions do not

exist, then there is no negativity that can ‘average out’ the positive regions.

If no negativity precedes a region of positivity, then that region positivity

cannot be entirely masked. The worst that can happen is that its height

and area will be attenuated by a region of negativity that follows it.
distributions for f BðtÞ that we implement here are in
accordance with estimates obtained experimentally by
(Kohfeld et al., 1981) and also informally in our
laboratory. However, Luce (1986) points out that asym-
metric, long-tailed estimates of f BðtÞ have been reported
(Snodgrass, 1969).

3.4. Considerations of statistical power

The analyses above show how model selection based on
the quantity R�BðtÞ (which is contaminated by base time)
will differ from model selection based on the uncontami-
nated quantity R�ðtÞ. However, those analyses were
conducted under the assumption that we had in our
possession perfect estimates of the cumulative distribution
functions required to calculate R�BðtÞ. This assumption will
never be satisfied in practice, and so here we investigate
how empirical model selection is affected by sample size,
base time variance and other parameters. Although a
thorough investigation of the statistical power of race
model tests (i.e. the probability of rejecting the race model
given that the data were not generated by a race model) is
beyond the scope of this paper, we present some
preliminary comments based on the results of Monte
Carlo simulations.
For the simulations that we report, the processing times

on channels A and V were modeled as Gaussians with
means fixed at 400ms and standard deviations fixed at
100ms. Following Ratcliff and Tuerlinckx (2002) we model
the base time as a uniform distribution whose range was
varied. For each set of parameters, reaction time data was
randomly generated, a sample was taken from the
generated data and then a model selection was conducted
based on the sampled cdf’s. By repeating this process 1000
times for each parameter setting we obtained estimates of
the statistical power (correct rejection rate) as well as the
correct retention rate. Three parameters were varied in this
exploratory analysis:
�
 N, the sample size. This is the number of reaction times
that were sampled in each condition (A, V, and AV) and
used to estimate the cdf’s FRTA

;FRTV
ðtÞ and F RTAV

,
respectively. Simulations were performed with N ¼

100; 250 and 500 samples.

�
 sB, the base time variance. The base time was drawn

from a uniform distribution of mean 250msec whose
range was set at either 50, 100 or 200ms. These ranges
correspond to standard deviations of 15, 29 and 58ms,
respectively.

�
 RSF, a parameter that governs the amount of RSs

facilitation included when generating data. The RSF is
defined as the difference between the mean value of the
processing times on the AV channel and the mean value
of the quantity min(A,V), which is what the mean
processing time would be equal to under a race model.
When RSF is zero we are simulating a race model. When
RSF is positive (negative) the amount of facilitation in
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Fig. 7. The probability of making the correct model selection decision as a function of redundant signals facilitation in the generating model, and also as a

function of the absence or presence of base time. Data shown here are for low variance base time, i.e. sB ¼ 100ms. When RSFo0 the generating model

produces less facilitation than expected from a UCIP race model: the correct decision is to retain the null (race) model; a rejection of the race model

constitutes a false alarm. When RSF40 the generating model produces more facilitation than expected from a UCIP race model, and the correct decision

is to reject; the probability of these correct rejections constitutes the statistical power of the our model selection tool.
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the RSs condition is greater (less) than what would be
expected under an independent channels (UCIP) race
model.

To calculate power it is necessary to set a criterion for
rejection of the null hypothesis (i.e. for rejection of the race
model). Here we used two different model selection criteria:

The ‘Max’ Criterion: We reject the null hypothesis if the
maximum value of the empirical R�BðtÞ exceeds a value of
0.05 at any time.

The ‘Area’ Criterion: We reject the null hypothesis if the
total area underneath the positive component of the
empirical R�BðtÞ exceeds a threshold value of 2ms.

The thresholds of 0.04 and 2ms were chosen by trial and
error to produce decent model selection performance.12

Varying these thresholds produces the familiar signal
detection trade-off in which greater statistical power is
12To get a sense for the size of these thresholds, notice that the positive

peak in Fig. 4 has a maximum value of about 0.16 and an area of 7.3ms.
accompanied by a higher rate of incorrect retentions of the
race model. It is worth noting that if one chose to use a
criterion in which the race model is rejected whenever R�BðtÞ

exhibits any positivity whatsoever (i.e. if one sets the ‘max’
threshold to 0) then one obtains extraordinarily high
incorrect rejection rates even when RSF is negative,
because the R�BðtÞ function is always near zero for small
values of t, and so minuscule fluctuations at early times
inevitably produce small regions of positivity in the race
model test function.
Figs. 7 and 8 show how the probability of making the

correct model selection decision (retain when RSFp0 and
reject when RSF40) varies with RSF and with N in the
medium variance (sB ¼ 100ms) and high variance
(sB ¼ 200ms) conditions, respectively. Of course the results
shown in these plots are contingent upon our choice of
model rejection criteria under both ‘Max’ and ‘Area’
thresholds. A more general picture (in which no threshold
is privileged) is presented in Figs. 9 and 10, which show
how the maximum of R�BðtÞ and the area under the positive
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Fig. 8. The probability of making the correct model selection decision as a function of redundant signals facilitation in the generating model, and also as a

function of the absence or presence of base time. Data shown here is for high variance base time, i.e. sB ¼ 200ms. When RSFo0 the generating model

produces less facilitation than expected from a UCIP race model: the correct decision is to retain the null (race) model; a rejection of the race model

constitutes a false alarm. When RSF40 the generating model produces more facilitation than expected from a UCIP race model, and the correct decision

is to reject; the probability of these correct rejections constitute the statistical power of the our model selection tool.
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component of R�BðtÞ are distributed as we vary the amount
of true RSs facilitation while fixing the parameters N ¼

250 and sB ¼ 100.
In interpreting these data, we draw two preliminary

conclusions:
(1)
 The effects of base time on the distributions of both the
maximum value and the positive area of the sampled
R�BðtÞ are small across a wide range of realistic choices
of the base time range sB. Power is decreased and the
rate of incorrect rejections is increased by the presence
of base time, especially for small values of RSF (i.e. for
very difficult model selection decisions). However, the
effects shown in the figures are produced for quite large
values of the base time variance parameters: when the
base time has a range of 50ms about its mean then
the plots of statistical power with and without base
time are indistinguishable.
(2)
 Decreasing N tends to produce the same effect as
decreasing the model rejection thresholds: it produces a
decrease in power and an increase in the rate of correct
retentions. This trade-off is illustrated in Figs. 7 and 8.
However, there is an exception to this overall pattern.
We observe that, for small positive values of RSF,
increasing N actually decreases power regardless of the
absence or presence of base time. This phenomenon can
be explained in terms of the fact that the race model
inequality is, as mentioned earlier, a conservative test.
So even if we have a perfect (infinite sample) estimate of
the race model test function R�ðtÞ—a function not

contaminated by base time—we are still led to
incorrectly retain the null hypothesis when the RSF is
small. Since tests based on the race model inequality are
intrinsically biased toward falsely accepting the null
hypothesis, we can actually increase our probability of
correctly rejecting the null hypothesis by decreasing
sample size. We note, however, that these effects are
only present for small values of RSF. Figs. 7 and 8
attest that for RSF425ms (i.e. even when there is only
a relatively small speed superiority present over the
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UCIP model), statistical power is over 80% for all of
the values of N and sB that we considered and for both
‘Max’ and ‘Area’ threshold criteria.
The applicability of these conclusions is restricted to the
class of unsophisticated (although commonly employed)
threshold-based model selection heuristics we describe
here. We would expect that the non-parametric race model
test proposed by Maris and Maris (2003) could achieve
much better model selection performance. We note,
however, that their test is not designed for a pre- or post-
decisional base time of the type we implement here, and, as
the authors themselves point out, the power of their test is
decreased when this form of base time is present in the
processing system. It would be interesting to know how
large this decrease in power is. A more systematic
investigation of power should also investigate a wider
range of distributions and parameterizations for both
decisional and non-decisional variables, as well as different
types of model rejection criteria. Finally, its seems that the
presence of positivity in R�BðtÞ is less diagnostic when it
occurs at small values of t than when it occurs at large
values of t, and we suggest that this phenomenon could be
fruitfully investigated in future studies.
3.5. Relating the race model inequality and the capacity

coefficient

Above we explore the effects of base time on the
diagnosticity of the test provided by the distributional
inequalities in Eq. (5). The reader might well be inclined to
ask why it is that we persist in testing (5a) p (5c) in our
data when testing (5a)p(5b) appears to provide a tighter
bound. The reason is that we do not have any general
experimental procedure for estimating the quantity
FminðRTA ;RTV Þ

ðtÞ which constitutes the tighter bound (5b).
Recall that FminðRTA ;RTV Þ

ðtÞ ¼ F AþBA
ðtÞ þ F VþBV

ðtÞ�

FAþBA and VþBV
ðtÞ. Our SS data provide us with estimates

of F AþBA
ðtÞ and FVþBV

ðtÞ. But we are denied access, in a
RSs experiment, to the joint distribution FAþBA and VþBV

ðtÞ.
It is, however, possible to estimate the joint distribution

FAþBA andVþBV
ðtÞ in the case when there are no dependen-

cies between channels A and V, because in that case

FAþBA and VþBV
ðtÞ ¼ FAþBA

ðtÞFVþBV
ðtÞ, (14)

and the joint quantity on the RHS is a simple product of
cdf’s estimated from our audio and visual SS data. So if we
are willing to assume independence of A and V (i.e. we are
willing to assume a UCIP model) then we can indeed test
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Table 1

The cdf-inequalities that can be practically employed used to test the race models and UCIP models both in the presence and the absence of base time

Race model UCIP model

Base time excluded F RTAV
pFRTA

þ FRTV
FRTAV

¼ FRTA
þ FRTV

� FRTA
FRTV

Base time included F RTAV
pFRTA

þ FRTV
FRTAV

pFRTA
þ FRTV

� FRTA
FRTV
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our model using the inequality (5a)p(5b) rather than the
standard (5a)p(5c). This is the essential reasoning from
which we construct another benchmark tool for RSs
architectures: the capacity coefficient CðtÞ (Townsend &
Nozawa, 1995; Wenger & Townsend, 2001, Faces as
Gestalt Stimuli: Process Characteristics).

The distinction between model-selection based on the
race model inequality (as discussed above) and model-
selection based on the capacity coefficient (a quantity that
we discuss presently in Section 4) is essentially this:
�
 the race model inequality is a test that benchmarks RSs
facilitation relative to Eq. (5c) and which can falsify all

race models;

�
 the capacity coefficient is benchmarked relative to

Eq. (5b) and is therefore a more specific test that can
be used to falsify independent-channels race models,
i.e. UCIP models.
Of course we have not yet defined the capacity coefficient
(see Section 4) but we wished to make clear the relationship
between these two measures. It is also the case that the
usefulness of the race model bound and the capacity
coefficient is not restricted to formal model-selection; both
measures can be used by experimentalists to benchmark the
magnitude of the facilitation effects that they observe. In
particular, the capacity coefficient has been related to a
variety of assumptions about processing architecture,
stopping rules and attentional allocation (e.g. Townsend
& Nozawa, 1995; Townsend & Wenger, 2004). These
results, in turn, allow predictions that latch system
characteristics to the major distributional inequalities.
In order to further clarify the situation, Table 1 below

summarizes the cdf-inequalities that can be practically
employed to test race models and UCIP models, both with
and without base time. The race model is commonly
expressed as a difference of cdf’s as in (7), while the
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capacity coefficient is defined using logarithmic transforms
of cdf’s as in (15). However, the theoretical foundations
linking the two measures are quite straightforward as we
will soon demonstrate, and as summarized in Table 1.

For the race model, the bounds do not change when base
time is included, but they are weakened for the reasons we
have outlined above. For UCIP models, the test is
weakened from equality to inequality; in Section 4.3 we
discuss the possibility of formulating a UCIP model test
that takes better account of base time. All distribution-level
tests should optimally be performed within a principled
statistical framework. (Maris & Maris, 2003, but see also
our comments on this approach in the discussion.).

4. Measures of capacity

Capacity is a measure of how the processing rates on
individual channels vary as we vary the number of active
channels. In an attempt to nail down this slippery concept
in the RSs context, Townsend and Nozawa (1995) defined
CðtÞ, a non-negative real-valued index that is called the
capacity coefficient. CðtÞ can be understood as measuring
how efficiency (the amount of total information processed
per unit of time) varies with load (the amount of incoming
information that is being processed). We know that the
UCIP model predicts a specific increase in efficiency as load
is increased, and we normalize the capacity coefficient
relative to this specific amount so that the reaction time
data gathered from a pure UCIP model will produce
CðtÞ ¼ 1. The investigator then compares empirical data
against the benchmark CðtÞ ¼ 1 to see whether subjects
exhibit more or less RSs facilitation than that produced by
a UCIP model.

The capacity coefficient and the Miller bound are
transformations of the same data, and so it is no surprise
that base time affects both of them. Townsend and
Nozawa (1995) noted that the presence of base time should
lead the capacity coefficient to underestimate capacity;
more recently Ingvalson and Wenger (2005) demonstrated
this fact using stochastic simulations. Here we present the
first analytic results describing the relationship between
base time and capacity. Before doing so, however, we recap
some of the properties of CðtÞ and their relationship to the
results from the preceding section.

4.1. Capacity without base time

In the absence of base time, for the redundant targets
experimental setup, capacity is defined as

CðtÞ �
HAV ðtÞ

HAðtÞ þHV ðtÞ

¼
log½1� F RTAV

ðtÞ�

log½1� F RTA
ðtÞ� þ log½1� FRTV

ðtÞ�
, ð15Þ

where HAðtÞ;HV ðtÞ and HAV ðtÞ are the integrated hazard
functions calculated in the SS-Audio, SS-Visual and RS
conditions, respectively (Townsend & Nozawa, 1995). We
mention the hazard functions in order to demonstrate their
concrete ties to the quantities FRTA

;FRTV
and F RTAV

that
were the focus of the preceding sections, but we emphasize
that none of these quantities account for base time in their
standard definitions.
In order to clarify the relationship between the

performance of the capacity measure in the absence and
presence of base time, we will compare two derivations.
In the derivation that follows we show how a UCIP
model that excludes base time produces CðtÞ ¼ 1, and in
Section 4.2 we show how the analogous derivation for a
base time inclusive UCIP model produces CðtÞp1. So we
begin by assuming a UCIP model without base time, i.e. we
assume that processing on the channels is independent, that
context invariance holds, and that processing is carried
out as schematized in Fig. 1. In that case we can unpack
C(t) into

C�ðtÞ ¼
log½1� FminðA0;V 0ÞðtÞ�

log½1� FAðtÞ� þ log½1� F V ðtÞ�
ðCIÞ

¼
log½1� FminðA0;V 0ÞðtÞ�

log½ð1� FAðtÞÞð1� FV ðtÞÞ�

¼
log½1� ðFA0 ðtÞ þ F V 0 ðtÞ � F A0 and V 0 ðtÞÞ�

log½1� FAðtÞ � F V ðtÞ þ F AðtÞF V ðtÞ�

¼
log½JðtÞ þ FA0 and V 0 ðtÞ�

log½JðtÞ þ FAðtÞFV ðtÞ�

¼
log½JðtÞ þ FmaxðA0;V 0ÞðtÞ�

log½JðtÞ þ FAðtÞFV ðtÞ�
, ð16Þ

where �1pJðtÞp1 is simply some quantity that appears on
both the numerator and denominator of our expression. On
the line marked (CI) we have invoked context invariance,
i.e. we assume that marginal cdf’s on the channels are
invariant across conditions so that FRTAV

ðtÞ ¼ FminðA0;V 0ÞðtÞ,
where A¼df A0;V¼df V 0.
Working from the last line in the sequence above we can

finally invoke the independence assumption of the UCIP
model, substituting F

A0 and V 0
ðtÞ ¼ FmaxðA0;V 0ÞðtÞ ¼ F AðtÞ

FV ðtÞ, and from this it immediately follows that

C�ðtÞ ¼ 1,

a result which holds for any UCIP model without base time.
This derivation was sketched under UCIP assumptions,

but we remind the reader that the capacity coefficient can
still be interpreted when neither context invariance nor
channel independence is satisfied. The capacity measure
provides us with a general measure of processing efficiency
relative to the UCIP baseline:

CðtÞ41. Supercapacity: The processing efficiency on
individual channels increases as the number of active
channels (i.e. the amount of information being fed into the
system) is increased. (See Townsend & Nozawa, 1995 for
more details.)

CðtÞ ¼ 1. Unlimited capacity: The processing efficiency
on individual channels is invariant as the number of active
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channels (i.e. the amount of information being fed into the
system) is increased.

CðtÞo1. Limited capacity: The processing efficiency on
individual channels decreases as the number of active
channels (i.e. the amount of information being fed into the
system) is increased.

4.2. Capacity with base time

We now move on to consider whether and how our
interpretations of CðtÞ should be modified when we
take base time into account. What happens to the capacity
measurement of our benchmark UCIP model when
base time is added to it? As in Section 4.1 we assume
independence and context invariance, but now we
substitute base-time-augmented cdf’s into the capacity
equation:

C�BðtÞ ¼
log½1� FminðA0 ;V 0ÞþBAV

ðtÞ�

log½1� FAþBA
ðtÞ� þ log½1� FVþBV

ðtÞ�

¼
log½1� FminðA0;V 0ÞþBAV

ðtÞ�

log½ð1� FAþBA
ðtÞÞð1� F VþBV

ðtÞÞ�

¼
log½1�

R t

�1
ðF 0Aðt� sÞ þ FV 0 ðt� sÞ � F A0 and V 0 ðt� sÞÞf BðsÞ ds�

log½1� FAþBA
ðtÞ � F VþBV

ðtÞ þ FAþBA
ðtÞFVþBV

ðtÞ�

¼
log½1� FA0þBA

ðtÞ � FV 0þBV
ðtÞ þ

R t

�1
F A0 and V 0 ðt� sÞf BðsÞ ds�

log½1� F AþBA
ðtÞ � FVþBV

ðtÞ þ FAþBA
ðtÞF VþBV

ðtÞ�

¼
log½JðtÞ þ

R t

�1
F A0 and V 0 ðt� sÞf BðsÞ ds�

log½JðtÞ þ FAþBA
ðtÞFVþBV

ðtÞ�

¼
log½JðtÞ þ FmaxðA0;V 0ÞþBAV

ðtÞ�

log½JðtÞ þ FAþBA
ðtÞFVþBV

ðtÞ�
, ð17Þ

where once again �1pJðtÞp1 is some quantity common to
both the numerator and denominator. It should not be
difficult to see that this derivation is analogous to the one
that was performed for the UCIP model without base time.
But the value of the capacity coefficient now depends on
the relative magnitude of FmaxðA0;V 0ÞþBAV

and F AþBA
ðtÞ

FVþBV
ðtÞ, whereas previously it depended on the relative

magnitude of FmaxðA0;V 0ÞðtÞ and F AðtÞF V ðtÞ. In the previous
derivation the quantities on numerator and denominator
were equal if A and V were independent, but now that base
time is incorporated this is no longer the case. Instead of
equality, an inequality holds between the quantities in the
numerator and the denominator. The following theorem
demonstrates this fact.13

Lemma 6. If A¼df A0¼df A00, V¼df V 0¼df V 00 and BA¼df

BV¼df BAV are all mutually stochastically independent non-

negative random variables then

FmaxðA0;V 0ÞþBAV
ðtÞXFAþBA

ðtÞFVþBV
ðtÞ. (18)

Proof. We begin by noting the cdf-level equality

AðtÞ þ FV ðtÞ ¼ FminðA00;V 00ÞðtÞ þ FmaxðA0;V 0ÞðtÞ (19)
13The primed variables, e.g. A, A0, A00, are used for the sake of accuracy

and generality in the proof, but they do complicate the notation

somewhat. For an initial understanding of the result it may be helpful

simply to ignore the primes.
which holds regardless of the dependency between A

and V.
Convolving both sides of Eq. (19) with the density

function of some positive random variable B we obtain the
relation

FAþBðtÞ þ FVþB0 ðtÞ ¼ FminðA00;V 00ÞþB00 ðtÞ

þ FmaxðA0;V 0ÞþB000 ðtÞ ð19
0
Þ

between the marginal cdf’s. We can rewrite this as

FAþBA
ðtÞ þ FVþBV

ðtÞ ¼ FminðA00;V 00ÞþBAV
ðtÞ

þ FmaxðA0;V 0ÞþB0
AV
ðtÞ ð1900Þ

by choosing B¼df BA¼df BV¼df BAV¼df B0AV .
Now we recall that Colonius (1990) has shown that

FminðA00;V 00ÞþBAV
ðtÞpFminðA00þBA;V

00þBV Þ
ðtÞ (20)

and by substituting ð1900Þ into (20) we obtain

FmaxðA0;V 0ÞþBAV
ðtÞXFAþBA

ðtÞ þ F VþBV
ðtÞ

� FminðA00þBA;V
00þBV Þ
ðtÞ. ð21Þ

Now we use the fact that A¼df A0¼df A00 and V¼df V 0¼df V 00

are all mutually stochastically independent. This indepen-
dence implies

FminðA00þBA;V
00þBV Þ
ðtÞ ¼ F A00þBA

ðtÞ þ FV 00þBV
ðtÞ

� FA00þBA
ðtÞFV 00þBV

ðtÞ

¼ F AþBA
ðtÞ þ FVþBV

ðtÞ

� FAþBA
ðtÞFVþBV

ðtÞ. ð22Þ

Finally, we can substitute (22) into Eq. (21) to produce

FmaxðA0;V 0ÞþBAV
ðtÞXFAþBA

ðtÞFVþBV
ðtÞ

which is the required result, Eq. (18). &

From Eq. (18) and some careful manipulation of
logarithms it then follows that the measured capacity of
a base time inclusive UCIP model is

C�BðtÞp1.

So the capacity of a UCIP model with base time is less than
or equal to the capacity of a UCIP model without base
time. Base time thus causes the capacity function to
underestimate RSs facilitation and makes systems look less
efficient than they really are. In Section 4.4 we estimate the
size of this underestimation bias. In the meantime we
briefly describe an experimental means of avoiding the bias
altogether.

4.3. Toward an unbiased test

The preceding considerations have demonstrated that
base time can alter the diagnosticity of the capacity
coefficient; the test of UCIP models is weakened from an



ARTICLE IN PRESS
J.T. Townsend, C.J. Honey / Journal of Mathematical Psychology 51 (2007) 242–265 257
equality to an inequality. We briefly present some ideas
about the possibilities for recovering race-model tests that
are unbiased by base time.

The new test is based on the earlier observation that,
regardless of the dependence between A and V,

FAþBA
ðtÞ þ F VþBV

ðtÞ ¼ FminðA0;V 0ÞþBAV
ðtÞ

þ FmaxðA00;V 00ÞþBAV
ðtÞ. ð1900Þ

In order to make practical use of this equality we will need
to augment our standard RSs experiment with a condition
in which subjects have to monitor both modalities in order
to make a correct decision (Townsend & Fifić, 2004).
This condition allows us to estimate the quantity
FmaxðA;V ÞþBAV

ðtÞ, since subjects must now process both
channels and it is the slower of the two channels that
determines the time taken for the decisional process to
complete. In other words we propose the following
mapping from experimental to theoretical variables:

Audio SS trial : RTA ¼ Aþ BA;

Visual SS trial : RTV ¼ V þ BV ;

Audiovisual redundant trial :

RTOR
AV ¼ minðA0;V 0Þ þ B0AV ;

Audiovisual exhaustive trial :

RTAND
AV ¼ maxðA00;V 00Þ þ B00AV :

(23)

In order to make this test work we will have to make the
strong assumption that subjects employ the same channels
A and V across both redundant signals (OR) and
exhaustive processing (AND) tasks, and that the depen-
dencies between A and V are also the same across these
conditions. This assumption, which can be understood as
an extension of standard context invariance, is most likely
to hold when A and V are processed independently; it is
then not unrealistic to assume that modalities processed
independently in an OR task are again processed indepen-
dently in an AND task. If we accept this step, then we can
define a new capacity function:

CBðtÞ ¼
log½PðRTOR

AV4tÞ�

log½PðRTA4tÞ þ PðRTV4tÞ � PðRTAND
AV 4tÞ�

.

(24)

This new capacity function can be interpreted in just the
same manner as CðtÞ (in terms of super, unlimited and
limited capacity), but it provides predictions that are
invariant under the inclusion/exclusion of base time from
the processing system. A closely analogous KBðtÞ function
can be defined that extends the KðtÞ function currently used
in tests of AND processing architecture (Townsend &
Wenger, 2004). We do not elaborate on this possibility any
further here. Instead we move on to consider how large an
effect the base time is having on our present capacity
coefficient, CðtÞ.
4.4. Analytic estimates of base time influence on capacity

4.4.1. Exponentially distributed base time

In order to quantitatively estimate the magnitude of the
these base time effects, we must make some more specific
assumptions about the processes A, V and B. For the sake
of simplicity we will assume in this first analysis that all the
processes in our system (cognitive and non-cognitive) are
exponentially distributed. There are several advantages in
assuming an exponential distribution:
(1)
 It is a common component of many process models
going back to Hohle (1965), McGill (1963, Stochastic
latency mechanisms) and Christie and Luce (1956).
(2)
 There is strong evidence that it closely approximates
the distributions of inserted items in search tasks
(Ashby, 1982), although statistical mimicking from
other distributions can occur in lower power data
(Ratcliff, 1988).
(3)
 Its simple functional form makes tractable the deriva-
tion of analytic formula that defines the properties of
our model system. We therefore do not have to perform
stochastic simulations which are often very imprecise in
their predictions regarding low-probability events.
It is however, true, that an all-exponential model does not
fit empirical data well; we will consider a somewhat more
realistic base-time-inclusive model in Section 4.4.2.
Suppose then that A;A0�ExpðaÞ, V ;V 0�ExpðuÞ and

B�ExpðbÞ. The survivor function, SðtÞ of the variable Aþ

BA can then be written

SAþBA
ðtÞ ¼ PðAþ BAXtÞ

¼ 1� FAþBA
ðtÞ

¼ 1�

Z t

�1

f Aðt� sÞFBðsÞ ds

¼
be�at � ae�bt

b� a
, ð25Þ

where F B is the common cdf of the base time components
BA, BV and BAV .
Similarly we obtain

SVþBV
ðtÞ ¼ PðV þ BVXtÞ

¼
be�ut � ue�bt

b� u
.

It is not difficult to show that if A0�ExpðaÞ and V 0�ExpðuÞ
then minðA0;V 0Þ�Expðaþ uÞ. From this it follows that for
the RSs trials we have

SminðA0;V 0ÞþBAV
ðtÞ ¼ PðminðA0;V 0Þ þ BAVXtÞ

¼ 1� FminðA0;V 0ÞþBAV
ðtÞ

¼ 1�

Z t

�1

f minðA0;V 0Þðt� sÞF BðsÞ ds

¼
be�ðaþuÞt � ðaþ uÞe�bt

b� ðaþ uÞ
. ð26Þ
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Using these expressions for the survivor functions we can
now write

CðtÞ ¼
lnSminðA0;V 0ÞþBAV

ðtÞ

lnSAþBA
ðtÞ þ lnSVþBV

ðtÞ

¼
lnSminðA0;V 0ÞþBAV

ðtÞ

lnSAþBA
ðtÞSVþBV

ðtÞ

¼

ln
be�ðaþuÞt � ðaþ uÞe�bt

b� ðaþ uÞ

� �

ln
ðbe�at � ae�btÞðbe�ut � ue�btÞ

ðb� aÞðb� uÞ

� � ð27Þ

for the RSD with base time included in which all processes
are exponentially distributed.

In Fig. 11 we can see Eq. (27) plotted with fixed channel
process rates ða ¼ u ¼ 1Þ but varying base time ðb 2 ½0; 5�Þ
and for time a span that is large relative to the mean
process time ðt 2 ½0; 10�Þ.

When b is large relative to a and u, i.e. when the mean
and variance of the base time are small relative to the total
reaction time the capacity index does not deviate far from
the desired CðtÞ ¼ 1, even for large t.

But when b is small relative to a and u, i.e. when the
mean and variance of the base time are large relative to the
total reaction time, the capacity index does indeed deviate
from CðtÞ ¼ 1. The deviation from CðtÞ ¼ 1 down to
CðtÞ ¼ 1

2
is a large deviation; bear in mind that a capacity

coefficient CðtÞ ¼ 1
2
is what we would normally expect from

minimum-time serial processing, where if HðtÞ ¼ HV ðtÞ ¼

HAðtÞ ¼ HAV ðtÞ, then it follows trivially that CðtÞ ¼ 1
2
. This

is a special case of the well-known fixed capacity parallel
model. Under these conditions, it is also the model which
forms the edge of the Grice bound, FAV ðtÞ ¼

max½FAðtÞ;FV ðtÞ� (see Colonius, 1990; Grice, Canham, &
Boroughs, 1984; Townsend & Nozawa, 1997).
Fig. 11. Plot of capacity CðtÞ measured from a UCIP model with base

time. A, V and BAV¼df BA¼df BV are all exponentially distributed. The

common mean and standard deviation of the base time variables are

varied by varying the exponential parameter b. The process variables had
fixed exponential parameters a ¼ u ¼ 1

450
ms.
Although Fig. 11 does show the possibility of large
deviations of CðtÞ from what we would expect in the
absence of base time, the range of parameters that produce
these large deviations appears unrealistic. In our discussion
in Section 5 we marshal some evidence (Evarts, 1966;
Kohfeld et al., 1981; Meijers & Eijkman, 1974; Ratcliff,
Thapar, & McKoon, 2001) indicating that the variance of
the base time is typically much smaller than the variance of
the channel process variables A and V. In terms of our
model parameters this means that we are most interested in
the parameter regime in which b is greater than að¼ uÞ. The
deviations shown in Fig. 11 for the regime b=a41 are not
large; and when b=a42 (i.e when the standard deviation of
the base time is less than twice the standard deviation of
the process time) then the deviations are negligible.
Experimenters should remain wary of paradigms in

which they can reasonably believe that a large proportion
of the total reaction time variance is due to variance in the
base time. However, as we argue in more detail in Section
5, this is unlikely in the majority of RSDs, and the impact
of base time on the diagnosticity of the capacity coefficient
(as well as the race model inequality) is therefore likely to
be small.

4.4.2. Normally distributed base time

The results from the previous section can be criticized on
the grounds that the mean and variance of the exponential
distribution are entirely confounded, since they are both
functions of the same parameter, b. The analysis presented
above cannot dissociate effects due to large-variance base
time from effects due to large-mean base time.
We therefore turn to consider the case in which channel

processes, A and V, follow an exponential distribution but
the base time, B, is distributed normally (see Heathcote,
Popiel, & Mewhort, 1991; Luce, 1986; Ratcliff, 1976).
Introducing the Normal distribution will complicate the
calculations somewhat, but will grant us the freedom to
independently vary the mean and variance of B.
So we now have A;A0�ExpðaÞ, V ;V 0�ExpðuÞ and

BA;BV ;BAV�Nðm;sÞ. Recall that if G�ExpðlÞ þNðm;sÞ
then we say that G follows an ex-Gaussian distribution:
ExGðl;m;sÞ. The random variables Aþ BA and V þ BV

will therefore follow ex-Gaussian distributions. In Appen-
dix C we provide a derivation of the cumulative distribu-
tion function of the ex-Gaussian:

FExGðtÞ ¼ � e�lðt�mÞþs
2l2F

t� m� s2l
s

� �

þ F
t� m
s

� �
. ð28Þ

So now we have

SAþBA
ðtÞ ¼ PðAþ BAXtÞ

¼ 1� FAþBA
ðtÞ

¼ 1þ e�aðt�mÞþs
2a2F

t� m� s2a
s

� �
þ F

t� m
s

� �
,



ARTICLE IN PRESS
J.T. Townsend, C.J. Honey / Journal of Mathematical Psychology 51 (2007) 242–265 259
SVþBV
ðtÞ ¼ PðV þ BVXtÞ

¼ 1� F VþBV
ðtÞ

¼ 1þ e�uðt�mÞþs
2u2F

t� m� s2u
s

� �
þ F

t� m
s

� �
,

SminðA0;V 0ÞþBAV
ðtÞ ¼ PðminðA0;V 0Þ þ BAVXtÞ

¼ 1� FminðA0;V 0ÞþBAV
ðtÞ

¼ 1þ e�ðaþuÞðt�mÞþs
2ðaþuÞ2F

�
t� m� s2ðaþ uÞ

s

� �
þ F

t� m
s

� �
.

ð29Þ

Substituting these into our capacity measure, Eq. (15),
we obtain
CðtÞ ¼

ln 1þ e�ðaþuÞðt�mÞþs
2ðaþuÞ2F

t� m� s2ðaþ uÞ
s

� �
þ F

t� m
s

� �� �

ln 1þ e�aðt�mÞþs
2a2F

t� m� s2a
s

� �
þ F

t� m
s

� �� �
1þ e�uðt�mÞþs

2u2F
t� m� s2u

s

� �
þ F

t� m
s

� �� �� � . (30)
With these two quantitative capacity measures in hand, we
can begin to investigate the effects of base time on capacity,
at least in this restricted domain.

In Fig. 12 we can see Eq. (30) plotted with
�
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500ms�1.

�
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tion s 2 ½0; 60�ms.
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. 12. Plot of capacity CðtÞ measured from a UCIP model with base

e. A and V are exponentially distributed; the base time variables are

mally distributed. The common mean of the base time variables is

100; the standard deviation sB of the base time varies between 0 and

s. The process variables had fixed exponential parameters

u ¼ 1
500

ms�1.
In our investigations, varying the common mean of the
base time variables had negligible impact on the shape of
CðtÞ. Changes in CðtÞ were driven by the base time
standard deviation, s, and so this is the parameter we
vary in Fig. 12. Of course this pattern is in accord with
intuition: a large constant base time (i.e. a base time with
zero variance) is far less of a problem for the experimen-
talist than a base time which has a small mean but which is
producing most of the observed variance in reaction
times.14 As pointed out in Section 3.2, the mean of the
base time determines the magnitude of the horizontal shift
in our reaction time cdf while the variance of the base time
determines the magnitude of the smoothing effect.
We see again that—just as with the race model inequal-

ity—base time of proportionally large variance does lead
the capacity coefficient to underestimate facilitatory effects
in data. But this analysis using normally distributed base
time—even more so than the analysis in the previous
section using exponentially distributed base time—suggests
that the effects of base time on the capacity coefficient are
negligible in the parameter range of almost any RSD. This
finding may offer comfort to the experimentalist employing
CðtÞ to measure capacity.
5. Discussion

5.1. Varying views of base time

We must refrain from hastily labeling any brain process
as ‘‘non-cognitive’’. Visual-system information is processed
even at the retinal level, and top–down influences on basic
sensory processes are well documented (e.g. Crist, Li, &
Gilbert, 2001). But it seems plausible that by varying the
salience of experimental stimuli we can selectively facilitate
some of the processes involved in task performance while
leaving other processes—such as the motor response
time—unchanged. It is in this manner that we operation-
ally define which are the cognitive/processing components
14Another thing to note in the figure is that for base time with non-zero

variance we observe Cð0Þo1. This does not seem to make sense, because

at t ¼ 0 all cdf’s should be zero since they are cdf’s of strictly positive

random variables; the numerator and denominator of CðtÞ should thus be

equal and so we should have Cð0Þ ¼ 1 regardless of any other factor. The

reason for this apparently anomalous behavior is that since base time

follows a Normal distribution it can take on negative values; so our

reaction times are no longer strictly positive random variables and—in

particular with high-variance base time—we can observe Cð0Þo1. This is

not a matter of great significance; the effects are negligible for realistic

values of the mean and standard deviation of base time.



ARTICLE IN PRESS

Fig. 13. Here we attempt to reconstruct a model that produces the result that RTAV ¼ minðA0 þ BA;V
0 þ BV Þ. In this conception of base time (Maris &

Maris, 2003) both channels can initiate a motor process and the ‘‘minimum’’ operation is implicitly generated on RS trials because the response time

measuring apparatus will only record the response from the channel which first completes both detection and motor processes.
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and which are the non-cognitive/base components of a
reaction time.

Base time is then defined as that component of our
measured reaction times that is
�

1

num

bou

sep
independently and identically distributed across trials,

�

(footnote continued)

the ‘‘readiness factor’’ mentioned above, these results are incompatible

with those of Dzhafarov (1992).
16Consider, for example, a task in which subjects are instructed to add

two integers—one presented in the audio and the other presented in the

visual modality—and to respond when the sum of the integers was equal

to, say, 16. It is difficult to imagine this task being performed in the

absence of functional stages.
17As far as we see this arrangement is the only way to interpret their
independently and identically distributed across experi-
mental conditions.

By definition, then, our base time is equal in distribution
across conditions ðBA¼df BV¼df BAV Þ and the base time
variables are statistically independent of the process variables
A and V.

Before we move on to discuss the likely theoretical and
empirical approaches that will help us to understand the
significance of base time for the RSs task and for reaction
time paradigms in general, we must address some possible
criticisms of the model of base time that we present in this
paper. There is, on the one hand, some doubt about the
existence of a base time component that is independent of
processing time, and on the other hand, dispute about the
architectural locus of this component.

By varying stimulus intensity in a simple visual
displacement–detection task Dzhafarov (1992) found
evidence for the thesis that one cannot consistently
decompose a reaction time into two components, one
independent of and the other dependent upon stimulus
intensity. He proposed an alternative model in which
process time and base time are both covariates of a single
‘‘readiness factor’’ that varies stochastically between
trials.15 This kind of result can also be explained by a
5However, Ratcliff (personal communication) points out that across

erous papers and large data sets he has found no correlation between

ndary separation and base time. To the extent that the boundary

aration parameter in the diffusion model framework is equivalent to
processing network comprising discrete time random
variables that are perfectly correlated.
When variables in a process model become highly

correlated with one another it becomes awkward to
continue modeling them as separate entities. Nevertheless,
motor response and target detection are unlikely to be
integrated processes when the experimental task imposes
decisional demands that are more complex than those in
the visual displacement–detection task that Dzhafarov
(1992) reports.16

Maris and Maris (2003) accept the standard account of
the existence of independent base time components but
they suggest that there is an acceptable alternative account
of the location of base time in the cognitive architecture. In
their alternative conception, the two channel process times
A0 and V 0 each have associated base times M 0

A and M 0
V (see

Fig. 13) but there is no ‘post-decisional’ base time.17This
implies that the audio and decisional processes have
independent access to the initiation of the motor response,
and that the winner of the ‘‘race’’ in the RS condition is just
the channel that first completes its processing and its motor
response, i.e. the channel that produces the experimentally
observed button-push. The authors point out that ‘‘With
suggestion that reaction times in the RS condition are described by the

variable minðA0 þM 0
A;V

0 þM 0
V Þ as opposed to the more standard

minðA0;V 0Þ þMAV . If the base time variable occurs only inside the

minimum operator then there cannot be any base time component in effect

after the ‘‘race’’ is completed.



ARTICLE IN PRESS

Fig. 14. Schematic of a general redundant signals model incorporating both ‘local’ and ‘global’ base times.
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this assumption, the difference between response time and
decision time vanishes, in the sense that we cannot
disentangle the two components of the response time.’’
(Maris & Maris, 2003). However, a great many studies
(Ilan & Miller, 1998; Pashler & Johnston, 1998, Attentional
limitations in dual-task performance; Sommer, Leuthold,
& Schubert, 2001) support the concept of two discrete
stages: a bottleneck response selection phase followed by a
motor execution phase.18

We agree that there may be non-cognitive elements
within each process channel. Consider the more general
model shown in Fig. 14. In this model two types of base
time have been included: a ‘‘global’’ base time and a
‘‘local’’ time. In the SS condition each channel (audio, A,
and visual, V) has its own local base time (MA and MV )
which models the most basic perceptual latencies and there
is also a ‘global’ base time (BA and BV ) which corresponds
roughly to the motor component of the reaction time. In
the RSs condition we have an analogous set-up, but now a
common motor component BAV is located after the
decisional bottleneck. It is our contention that we can
18Naturally this is an empirical question which we cannot settle here.

But it should be possible to decide between these two pictures of base time

on empirical grounds. For instance, consider systems factorial technology,

based on selective influence of experimental factors on distinct sub-

processes (e.g. Schweickert, 1978; Sternberg, 1969; Townsend & Nozawa,

1995). If the model of Fig. 2 is correct, it should be straightforward to find

an additive factor associated with the motor time. This should be

impossible with the model of Fig. 13. In principle, a RSs experiment in

which subjects respond to the audio signal and to the visual signal with

separate response-buttons might even help decide the issue. If the model

that employs a shared post-decisional base time is accurate, then we would

expect that experimental subjects would very infrequently respond by

pressing both the audio response and the visual response buttons. If the

model that employs independent motor responses is correct then we would

expect more of these double-presses. Even as a thought experiment, it

seems unlikely these predictions would be verified. For an example of

experimentation involving the manipulation of response modalities see

Hughes (1994).
safely neglect the variables MA;M
0
A and MV ;M

0
V because

they occur in series with A;A0 and V ;V 0, respectively and
will therefore always be confounded with those two
variables. In choosing to neglect MA and MV , then, we
are defining each channel process variable to include both
processing time and ‘‘local’’ base time. This is equivalent to
writing A �MA þ A, A0 �M 0

A þ A0, V �MV þ V ,
V 0 �M 0

V þ V 0, and thereby recovering the standard model
shown in Fig. 2 and employed throughout this paper.
The uncertainty about the place and the properties of

base time reflects a more general difficulty in linking
behaviorist-style experimental data with the insights from
more recent approaches based on EEG (Ilan & Miller,
1998; Sommer et al., 2001) and fMRI (Schubert &
Szameitat, 2003). The behavioral and neurological ap-
proaches can undoubtedly be implemented synergistically,
but mapping results from one field onto those of the other
without understanding the differences in terminology and
methodology will simply result in confusion. As Sternberg
(2001) points out: ‘‘A stage is a function carried out during
an epoch in time; it is not necessarily associated with a
distinct neuroanatomical processor. Too often, an inferred
flowchart, which describes the temporal arrangement of a
set of operations (and is inherently ordered, because of the
nature of time), has been confused with a circuit diagram,
which indicates how processors are connected.’’
Given the instrumental definition of base time that we

suggest above, it may well emerge that the activation time-
course of neurons in motor cortex is, perplexingly,
uncorrelated with base time and yet strongly correlated
with the process times on the detection channels. This
could be the case if, for example, all of the process-
independent variability in motor time is a consequence of
neural noise in the basal ganglia or the spinal column, two
areas inaccessible to EEG recording.
However, single-cell recording data from monkeys (Evarts,

1966) indicates (a) that ‘‘motor time’’ and ‘‘pre-motor time’’
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are uncorrelated in a hand-movement task and (b) that the
standard deviation of motor time was 8ms. Meijers and
Eijkman (1974) pointed out that, based on the same single-
cell recording data, ‘‘the ratio between the variance of
premotor-time and the variance of the motor-time varied
from 5–10’’. These estimates of base time are in accord with
the data of Kohfeld et al. (1981) who report a mean of 136ms
and a standard deviation of 9.1ms for the base time.

The analyses we present in this paper indicate that the
crucial factor producing bias in our model-selection tools is
the proportion of reaction time variance contributed by
variance in the base time and the quantitative estimates we
cite in the paragraph above are therefore reassuring.
However, there are also larger estimates of base time
variance in the literature. Based on parameter fits to a
diffusion model incorporating a uniformly distributed base
time, Ratcliff and Tuerlinckx (2002) and Ratcliff and Smith
(2004) report that the base time variable is located within
an absolute range of 100–200ms around its mean. These
absolute range estimates corresponds to standard devia-
tions of approximately 30–60ms. If the standard deviation
of the base time does indeed fall at the higher end of this
larger range then the smoothing effects can in fact be quite
substantial (see, e.g. Fig. 5) and the diagnosticity of our
model selection tools can be seriously compromised.

One explanation for the different values of base time
reported in the literature is that base time is not an identical
quantity across experimental conditions and tasks. Base
time may well have a larger mean and variance in more
complicated tasks, and this possibility underlines the
uncertainty in our very definition of this theoretical
construct. However, in more complex tasks the increase
in base time variance is likely to be matched by an increase
in the variance of the process times. In this case the
proportion of variance contributed by base time, and the
impact of base time on our model selection tools, would
remain small. We eagerly anticipate the marriage of
theoretical approaches such as Fourier deconvolution
(Goldstone, 2000, but note Sheu & Ratcliff, 1995) and
formal non-parametric tests (Cortese & Dzhafarov, 1996;
Van Zandt, 2002, Analysis of response time distributions)
with novel neuroimaging techniques toward an under-
standing and resolution of the base time problem.

6. Conclusions

We have demonstrated the relationship between the race
model test function R�ðtÞ and the capacity coefficient
function CðtÞ. We provide distribution-free analytic results
indicating that both of these model-selection tools will be
biased when base time is present.

Typically, the presence of base time produces a bias
toward underestimation of RSs facilitation in both R� and
CðtÞ. The magnitude of this model-selection bias increases
as we increase the proportion of total reaction time
variance that is contributed by variance in base time.
Additionally, we investigated the statistical power of model
selection tools based on the race model inequality using
Monte Carlo simulations and showed that the effects of
base time on power are usually small. We also sketched out
a means of building a statistical test function which, relying
on data from both AND tasks and OR tasks, would be
unbiased in the presence of base time.
Finally, we provided quantitative estimates of the effects

of base time for a range of realistic reaction time
distributions. In general, the timing and magnitude of the
base times bias effects depend non-trivially on the specific
distributions governing the channel and base time pro-
cesses. Under relatively realistic assumptions and within
the regime of standard parameters as described in the text,
it appears that bias effects will be minor. We note,
however, that uncertainty remains concerning the magni-
tude and even the definition of base time, and suggest that
experimentalists continue to be alert to the possibility of
data contamination from this source.
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Appendix A. A note on notation

Random variable notation must be handled carefully
when describing mathematical models of RSs effects,
because the models commonly involve variables being
realized marginally in one context and jointly in another. It
is important to be clear about which kind of variable
realization is taking place. For convenience we assume the
standard convention under which multiple instances of the
same random variable in a single equation denote the same
realization of that random variable because it allows us to
write down intuitive formulations such as X þ X ¼ 2X :
When modeling data from a RSs experiment—an

experiment in which reaction time data for the A, V and
AV are gathered on separate trials or even on separate days
of experimentation—we must therefore be sure to use
different random variables to describe the processes
ongoing in each condition. When context invariance is
assumed many of the variables across conditions are
identically distributed and we can be tempted to denote
these separate variables with a common symbol, but this
can lead us into subtle mistakes. This occurs, for example,
in the Appendices of Ulrich and Giray (1986), where the
authors attempt to theoretically link their SS and RSs data
by means of the following manipulation:

RTAV ¼ minðA;V Þ þ B

¼ minðAþ B;V þ BÞ

¼ minðRTA;RTV Þ.
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The problem with this reasoning is that RTA and RTV are
variables modeling data gathered on entirely separate
occasions and yet they are being substituted for the terms
Aþ B and V þ B which share a common factor B that
always realizes to an identical value in both expressions.
One way to avoid making this kind of error is to use the
more careful (and unfortunately less elegant) notation in
which distinct (but identically distributed) base time
variables BA, BV and BAV are deployed for each condi-
tion.19 This is a small point, but one with the potential to
cause confusion. In Appendix B we provide a corrected
proof of Ulrich and Giray’s Theorem 1.
Appendix B. Revised proof

The following is a revision of Theorem 1 from Ulrich
and Giray (1986). For an elegant version of the RHS result
see Luce (1986, p. 131); this book contains a comprehensive
and insightful commentary on the base time issue, and
offers the reader more perspective than we can provide
here.

Theorem 7. If X and Y are (possibly dependent) non-

negative channel process variables and BX¼df BY¼df BXY are

non-negative base time variables that are stochastically

independent of X and Y, then

max½FXþBX
ðtÞ;FYþBY

ðtÞ�pFminðX 0;Y 0ÞþBXY
ðtÞ

pF XþBX
ðtÞ þ F YþBY

ðtÞ.

Proof. We prove the leftmost inequality first. We begin by
adopting the notation f BðtÞ for the common density
function of the variables BX , BY and BXY and simply
writing

FminðX 0;Y 0ÞþBXY
ðtÞ �max½FXþBX

ðtÞ;F YþBY
ðtÞ�

¼

Z t

�1

FminðX 0;Y 0ÞðsÞf Bðt� sÞ ds

�max

Z t

�1

FX ðsÞf Bðt� sÞ ds;

	

�

Z t

�1

FY ðsÞf Bðt� sÞ ds




at which point we can choose, without loss of generality,
the value of the max function on the RHS. We then have

FminðX 0;Y 0ÞþBXY
ðtÞ �max½F XþBX

ðtÞ;F YþBY
ðtÞ�

¼

Z t

�1

ðFminðX 0;Y 0ÞðsÞ � F X ðsÞÞf Bðt� sÞ ds

¼

Z t

�1

½Positive Fn�½Positive Fn� ds

X0 ðB:1Þ
19Colonius and Vorberg (1994) make a similar slip when adding a

common motor component M to a variety of separate decisional variables

(pp. 44–45).
demonstrating the required result, which is essentially a
base time generalization of the Grice Inequality (Grice
et al., 1984).
We now proceed to prove the rightmost inequality,

FminðX 0;Y 0ÞþBXY
ðtÞpF XþBX

ðtÞ þ F YþBY
ðtÞ. We begin by con-

sidering the difference of the two quantities:

FminðX 0;Y 0ÞþBXY
ðtÞ � FXþBX

ðtÞ � FYþBY
ðtÞ

¼

Z t

�1

FminðX 0;Y 0ÞðsÞf Bðt� sÞ ds

�

Z t

�1

F X ðsÞf Bðt� sÞ ds

�

Z t

�1

F Y ðsÞf Bðt� sÞ ds

¼

Z t

�1

½FminðX 0;Y 0ÞðsÞ � F X ðsÞ � FY ðsÞ�f Bðt� sÞ ds. ðB:2Þ

Now we recall that FminðX 0;Y 0ÞðsÞ � FX ðsÞ � F Y ðsÞp0 from
the standard version of the race model inequality, Eq. (3),
so that we can rewrite the above as

FminðX 0;Y 0ÞþBXY
ðtÞ � FXþBX

ðtÞ � FYþBY
ðtÞ

¼

Z t

�1

½Negative Fn�½Positive Fn� ds

p0 ðB:3Þ

which provides the desired result

FminðX 0;Y 0ÞþBXY
ðtÞpF XþBX

ðtÞ þ F YþBY
ðtÞ. (B.4)

This completes the proof of the rightmost inequality, which
is a base time generalization of the Miller Race Model
Inequality. &
Appendix C. The ex-Gaussian distribution

Recall that the probability density function of the ex-
Gaussian distribution is given by

f ExGðtÞ ¼
1

t
eð�tþmÞ=tþs2=2t2F

t� m�
s2

t
s

0
BB@

1
CCA,

where f is the cumulative distribution function of a
Gaussian distribution with m ¼ 0;s ¼ 1.
Now FExGðtÞ ¼

R t

�1
f ExGðsÞ ds so we need to integrate

the pdf above to obtain the cdf. First we recall the notation

FðxÞ ¼
Z x

�1

e�s2=2 ds

which we will employ as we integrate by parts, i.e. we use
the fact that

Z t

�1

f ðsÞg0ðsÞ ds ¼ ½f ðsÞgðsÞ�t�1 �

Z t

�1

f 0ðsÞgðsÞ ds
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Table D.1 (continued )

Symbol Meaning Note

BAV Base time in RS audio-

visual condition

Theoretical random

variable

RTA Reaction time in SS audio

condition

Empirical random variable

RTV Reaction time in SS visual

condition

Empirical random variable

RTAV Reaction time in RS audio-

visual condition

Empirical random variable

¼df ‘is equal in distribution’ Relation between random

variables

X 0 Random variable with

property X 0¼df X

FX ðtÞ Marginal cdf of X ¼ PðXptÞ

SX ðtÞ Marginal survivor function

of X

¼ PðX4tÞ

f BðtÞ Marginal probability

density of BA, BV , BAV

CðtÞ Capacity function See Townsend and Nozawa

(1995)

C�ðtÞ Capacity function under

UCIP assumptions
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to transform our integral into a more tractable form.

FExGðtÞ ¼

Z t

�1

f ðsÞ ds

¼

Z t

�1

1

t
eð�sþmÞ=tþs2=2t2F

s� m�
s2

t
s

0
BB@

1
CCA ds

¼ �eð�sþmÞ=tþs2=t2F
s� m�

s2

t
s

0
BB@

1
CCA

2
664

3
775

t

�1

þ

Z x

�1

eðð�sþmÞ=tþs2=2t2Þe�ð1=2Þðt�m�s
2=t=sÞ2 ds

¼ � eð�tþmÞ=tþs2=t2F
t� m�

s2

t
s

0
BB@

1
CCA

þ

Z t

�1

e�ð1=2Þððs�mÞ=sÞ
2

ds

¼ � eð�tþmÞ=tþs2=t2F
t� m�

s2

t
s

0
BB@

1
CCA

þ F
t� m
s

� �
.

It is not difficult to see that F ðtÞ is an increasing function
with the properties limt!�1 F ðtÞ ¼ 0 and limt!1 F ðtÞ ¼ 1;
it is therefore also a cumulative distribution function as
required.
Appendix D. Notations and abbreviations

Table D.1 shows a complete list notations and abbrevia-
tions.
Table D.1

Notations and abbreviations used in the text

Symbol Meaning Note

SS Single signal Experimental condition

RS Redundant signals Experimental condition

UCIP Unlimited capacity,

independent, parallel

Type of race model

cdf Cumulative distribution

function

A Process time in SS audio

condition

Theoretical random

variable

V Process time in SS visual

condition

Theoretical random

variable

AV Process time in RS audio-

visual condition

Theoretical random

variable

BA Base time in SS audio

condition

Theoretical random

variable

BV Base time in SS visual

condition

Theoretical random

variable
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