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An emerging view posits a timescale-based cortical topography, with integration windows increasing from
sensory to association areas. In this issue, Chaudhuri et al. (2015) present a cortical model wherein a hierar-
chy of timescales arises from local and inter-regional circuit dynamics.
In real life, the brain needs to concurrently

accumulate and integrate information

over multiple timescales. For example,

when two monkeys from different families

start to fight, other monkeys from each

family track the fight: they observe the

facial expressions and body positioning

of the fighters as they circle (milliseconds

scale), they track the movements of the

fighters as they battle (seconds scale),

and they avoid interactions with the

opposing family until the fight (which can

last for many minutes) resolves (Cheney

and Seyfarth, 1999). Only a system with

the ability to allow past information to

exert an influence on current processing

over multiple timescales, in parallel, could

accomplish such a feat.

An analog for this problem ofmulti scale

temporal processing exists in the spatial

domain, and its solution in the brain is bet-

ter understood. In visual cortex, neurons

in early areas that code for basic features

such as edges and contrast have small

spatial receptive fields, i.e., a small region

of visual space over which the appro-

priate stimulus will elicit a response. As

one moves downstream to the areas that

receive and compile input from earlier vi-

sual areas, neurons have increasingly

large spatial receptive fields (Hubel and

Wiesel, 1962), enabling them to exhibit

properties such as size and location

invariance. Thus, the problem of concur-

rent processing of information at multiple

spatial scales is addressed by a hierarchi-

cal organization of increasing receptive

field sizes that mirrors the flow of informa-

tion from early regions to later regions.

Studies of neural dynamics in humans

and non-human primates have begun to

reveal a distributed, hierarchical organi-
244 Neuron 88, October 21, 2015 ª2015 Else
zation of ‘‘temporal receptive windows’’

in the cortex, a temporal counterpart of

the spatial hierarchy. Converging results

from human imaging (Hasson et al.,

2008), human electrocorticography (Hon-

ey et al., 2012), and monkey single-unit

recordings (Murray et al., 2014) show

that processing timescales range from

the milliseconds range in early visual

and auditory cortex, up to the seconds

range in intermediate areas, and up to

minutes or longer in high-level associa-

tion areas such as posterior medial,

lateral tempoparietal, and prefrontal cor-

tex. Processing timescales have been

measured by (1) observing activity decay

rates following briefly presented stimuli,

(2) computing autocorrelation properties

of both stimulus-driven and spontaneous

(during rest) activity, and (3) examining

the durations at which changes to past

input can affect responses to dynamic

stimuli in the present moment. This

distributed organization has been pro-

posed to enable concurrent integration

over multiple timescales, as critically

needed for processing real-life contin-

uous stimuli (Hasson et al., 2015).

To explore what neurobiological circuit

mechanisms might support such a hier-

archy of timescales, Chaudhuri et al.

(2015) constructed a large-scale dynam-

ical model based on findings from an

anatomical analysis of connectivity in

the macaque neocortex (Markov et al.,

2014). In the model, each cortical area

is described by a threshold-linear, excit-

atory-inhibitory recurrent network. A key

feature of the model is the implementa-

tion of anatomical heterogeneity across

the cortex: inspired by studies showing

that the number of basal dendritic spines
vier Inc.
on layer 3 pyramidal neurons increases

from early to late cortical areas (Elston,

2000), the authors varied the density

of excitatory connection strengths in

each cortical area according to the

position of that area in the cortical hierar-

chy. Their hypothesis was that this inter-

regional variation in the level of recurrent

excitation could give rise to a hierarchy of

different timescales across the cortex.

To examine the model’s response to

stimulus input, the authors simulated

pulsed input to primary visual cortex.

They observed propagation of responses

across areas, and notably they found

that decay times increased progressively

along the cortical hierarchy. Similarly,

when the authors simulated white-noise

input, they saw in early sensory areas

that temporal autocorrelation decayed

rapidly (at the scale of a few hundred mil-

liseconds), while in later areas autocorre-

lation persisted for much longer (at the

scale of a few seconds). Time constants

that were fit to the decay of each

area’s autocorrelation function generally

increased along the cortical hierarchy.

Interestingly, there were exceptions;

e.g., area 8m, part of the frontal eye fields,

expressed a long timescale despite being

relatively low in the cortical hierarchy

(matching empirical observations from

human brain imaging), seemingly due to

its connections with long-timescale pre-

frontal areas. When primary somatosen-

sory cortex was stimulated, responses

propagated along a separate network of

areas from the visual group, again with

hierarchically increasing timescales.

Does the variation in processing time-

scales across regions arise from region-

specific local circuit properties, or from
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the position of a region within the network

macroarchitecture, or from a combination

of the two properties? To test this, Chaud-

huri et al. examined the effects of abolish-

ing the inter-area structure of local micro-

circuitry, or inter-areal projections, and of

both together. When differences in local

microcircuitry (i.e., the gradient of excit-

atory input strength across areas) were

removed, time constants decreased and

the relationship between regional time-

scale versus hierarchical level was elimi-

nated. When the empirical architecture

of long-range projections was removed,

regional timescales were moderately

reduced overall, and each area’s time-

scale strictly reflected its position in the

hierarchy.

Finally, the authors explored the conse-

quences of local microcircuit heterogene-

ity for functional connectivity in themodel.

When local heterogeneity was removed,

the correlation between functional con-

nectivity and anatomical connectivity

was drastically reduced. Empirical

studies of the primate brain show that

functional connectivity and anatomical

connectivity are related, but not strongly

so. The current finding offers a possible

explanation: resting state functional con-

nectivity is typically calculated under the

assumption of homogeneity across

areas. Thus, the correspondence of gross

functional and anatomical connectivity

might be better understood by account-

ing for local circuit properties that vary in

a regular manner along the macro-scale

anatomical hierarchy. Additionally, the

authors found that areas with long time-

scales were especially important for func-

tional connectivity in themodel: the longer

an area’s timescale, the greater the

impact on global activity patterns when

the area was lesioned.

Chaudhuri et al. have insightfully

demonstrated how anatomical connectiv-

ity—both within and between regions—

can produce a hierarchy of timescales in

neuronal population activity. There are a

number of other mechanisms that will be

important to consider in future work. First,

it will be important to consider variations

in processing timescales that may arise

from changes in the local biophysical

properties of neurons across the cortical

hierarchy: for example, the density of

‘‘fast’’ and ‘‘slow’’ glutamate receptors

(Wong and Wang, 2006) as well as the
density of presynaptic calcium channels

and other regulators of synaptic depres-

sion and facilitation (Zucker and Regehr,

2002). Second, ascending neuromodula-

tory systems will directly regulate the

persistence of neuronal population activ-

ity, and this effect may apply to varying

extents as a function of the diffuse projec-

tions targeting higher and lower levels of

the cortical hierarchy. Finally, cortical pro-

cesses can achieve very long timescales

via interactions with the medial temporal

lobe, which supports direct reinstatement

of prior neuronal states. The recurrent

mechanisms in the model of Chaudhuri

et al. produce timescales up to the order

of seconds, but it will be important for

future work to determine how some cir-

cuits appear to integrate information

over minutes of time, and whether hippo-

campal interactions are a necessary

component of this process.

When we refer to the ‘‘integration’’ of

information over time, we mean, broadly,

the modification of an input signal in light

of past states of a circuit. The model of

Chaudhuri et al. instantiates the influence

of past stimuli on current responses by

slowing the decay of activity in higher

levels of the hierarchy and is thus closer

to a more specific mathematical sense

of integration. The persistent activity

state observed in higher-level areas re-

flects accumulation of inputs over time

and has been theorized to support cogni-

tive processes such as working memory

and decision-making. While this simple

mathematical notion of input accumula-

tion fits well with a buildup of evidence

prior to a decision, it is important to

question whether the ability to accumu-

late information over time is generally

sufficient for supporting functions that

require the combination of prior and pre-

sent information. Past and present input

may have a more complex relationship,

above and beyond simple summation:

for example, the meaning of—and neural

responses to—the words ‘‘she carefully

closed all of the windows’’ will change

if they are preceded by the words

‘‘When Frieda left her apartment for

vacation’’ versus ‘‘When Frieda logged

onto her friend’s laptop.’’ It seems that

a circuit would need abilities beyond

signal summation to differentiate these

cases; some manner of experience-

based expectation is at play, enabling
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past input (‘‘apartment’’ versus ‘‘laptop’’)

to rapidly influence the meaning of, and

neural responses to, stimuli a few sec-

onds later (‘‘windows’’). Observations

like these—which indicate that active

traces of past information within each

local circuit modify online processing—

encourage the development of a new

family of biophysical circuit models that

will allow for complex mixing of recent

memory with continuous input (Hasson

et al., 2015).

Despite the empirical observations of

slower processing in higher-order sys-

tems as noted above, we should not

forget that slow processes unfold in sen-

sory circuits (Yaron et al., 2012), and

higher-order systems may respond very

quickly (Kirchner et al., 2009). More

generally, for a system as complex as

a neuronal circuit, it can be overly reduc-

tionist to assign a single timescale of

activity (Marom, 2010). It is important,

therefore, to conceive of processing

timescales as a bias of activity within a

system that can operate on multiple

scales, rather than a prescription of

activity at a single scale. The flexibility

of processing timescales has an analog

in the spatial domain: neurons will often

exhibit some level of response outside

the immediate range of their spatial

receptive fields, which is dependent on

task, context, and attention demands

(Op De Beeck and Vogels, 2000). Just

as spatial receptive fields have been a

powerful construct for visual research,

temporal receptive windows may serve

as a useful organizing principle for old

and new discoveries in the dynamics of

cortical processing.
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