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Abstract 

Humans observe actions performed by others in many different visual and social settings. What 

features do we extract and attend when we view such complex scenes, and how are they 

processed in the brain? To answer these questions, we curated two large-scale sets of naturalistic 

videos of everyday actions and estimated their perceived similarity in two behavioral 

experiments. We normed and quantified a large range of visual, action-related and social-

affective features across the stimulus sets. Using a cross-validated variance partitioning analysis, 

we found that social-affective features predicted similarity judgments better than, and 

independently of, visual and action features in both behavioral experiments. Next, we conducted 

an electroencephalography (EEG) experiment, which revealed a sustained correlation between 

neural responses to videos and their behavioral similarity. Visual, action, and social-affective 

features predicted neural patterns at early, intermediate and late stages respectively during this 

behaviorally relevant time window. Together, these findings show that social-affective features 

are important for perceiving naturalistic actions, and are extracted at the final stage of a temporal 

gradient in the brain. 
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Introduction 1 

In daily life, we rely on our ability to recognize a range of actions performed by others in a 2 

variety of different contexts. Our perception of others’ actions is both efficient and flexible, 3 

enabling us to rapidly understand new actions no matter where they occur or who is performing 4 

them. This understanding plays a part in complex social computations about the mental states 5 

and intentions of others (Jamali et al., 2021; Spunt et al., 2011; Thornton et al., 2019; Thornton 6 

and Tamir, 2021; Weaverdyck et al., 2021). Visual action recognition also interacts cross-7 

modally with language-based action understanding (Bedny and Caramazza, 2011; Humphreys et 8 

al., 2013). However, there are two important gaps in our understanding of action perception in 9 

realistic settings. First, we still don’t know which features of the visual world underlie our 10 

representations of observed actions. Second, we do not know how different types of action-11 

relevant features, ranging from visual to social, are processed in the brain, and especially how 12 

they unfold over time. Answering these questions can shed light on the computational 13 

mechanisms that support action perception. For example, are different semantic and social 14 

features extracted in parallel or sequentially?  15 

Relatively few studies have investigated the temporal dynamics of neural responses to actions. 16 

During action observation, a distributed network of brain areas extracts action-related features 17 

ranging from visual to abstract, with viewpoint-invariant responses emerging as early as 200 ms 18 

(Isik et al., 2018). Visual features include the spatial scale of an action (i.e. fine-scale 19 

manipulations like knitting versus full-body movements like running) represented throughout 20 

visual cortex (Tarhan and Konkle, 2020), and information about biological motion, thought to be 21 

extracted within 200 ms in superior temporal cortex (Giese and Poggio, 2003; Hirai et al., 2003; 22 

Hirai and Hiraki, 2006; Johansson, 1973; Jokisch et al., 2005; Vangeneugden et al., 2014). 23 

Responses in occipito-temporal areas have been shown to reflect semantic features like invariant 24 

action category (Hafri et al., 2017; Lingnau and Downing, 2015; Tucciarelli et al., 2019, 2015; 25 

Wurm and Caramazza, 2019; Wurm and Lingnau, 2015), as well as social features like the 26 

number of agents and sociality of actions (Tarhan and Konkle, 2020; Wurm et al., 2017; Wurm 27 

and Caramazza, 2019).  28 
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Among the visual, semantic, and social features thought to be processed during action 29 

observation, it is unclear which underlie our everyday perception in naturalistic settings. 30 

Mounting evidence suggests that naturalistic datasets are key to improving ecological validity 31 

and reliability in visual and social neuroscience (Haxby et al., 2020; Nastase et al., 2020; Redcay 32 

and Moraczewski, 2020). Most action recognition studies to date have used controlled images 33 

and videos showing actions in simple contexts (Isik et al., 2018; Wurm and Caramazza, 2019). 34 

However, presenting actions in natural contexts is critical, as stimulus-context interactions have 35 

been shown to modulate neural activity (Willems and Peelen, 2021). Recent attempts to 36 

understand naturalistic action perception, however, have yielded mixed results, particularly with 37 

regard to the role of social features. For example, one recent study concluded that sociality (i.e., 38 

presence of a social interaction) was the primary organizing dimension of action representations 39 

in the human brain (Tarhan and Konkle, 2020). Another, however, found that semantic action 40 

category explained the most variance in fMRI data, with little contribution from social features 41 

(Tucciarelli et al., 2019).  42 

Here, we combined a new large-scale dataset of everyday actions with a priori feature labels to 43 

comprehensively sample the hypothesis space defined by previous work. This is essential in light 44 

of the conflicting results from previous studies, as it allowed us to disentangle the contributions 45 

of distinct but correlated feature spaces. We used three-second videos of everyday actions from 46 

the “Moments in Time” dataset (Monfort et al., 2019) and replicated our results across two 47 

different stimulus sets. Action videos were sampled from different categories based on the 48 

American Time Use Survey (ATUS, 2019) and were highly diverse, depicting a variety of 49 

contexts and people. We quantified a wide range of visual, action-related, and social-affective 50 

features in the videos and, through careful curation, ensured that they were minimally 51 

confounded across our dataset.  52 

We used this dataset to probe the behavioral and neural representational space of human action 53 

perception. To understand the features that support natural action viewing, we predicted 54 

behavioral similarity judgments using the visual, action-related, and social-affective feature sets. 55 

Next, to investigate the neural dynamics of action perception, we recorded 56 

electroencephalography (EEG) data while participants viewed the stimuli, and we used the three 57 

sets of features to predict time-resolved neural patterns.  58 
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We found that social-affective features predict action similarity judgments better than, and 59 

independently of, visual and action-related features. Visual and action-related features explained 60 

less variance in behavior, even though they included fundamental features such as the scene 61 

setting and the semantic category of each action. Neural patterns revealed that behaviorally-62 

relevant features are automatically extracted by the brain in a progression from visual to action to 63 

social features. Together, our results reveal the importance of social-affective features in how we 64 

represent other people’s actions, and show that these representations emerge in the brain along a 65 

temporal gradient.   66 

Results 67 

Disentangling visual, action, and social-affective features in natural videos 68 

We curated two sets of naturalistic three-second videos of everyday actions from the Moments in 69 

Time dataset (Monfort et al., 2019). The videos were selected from a larger set, ensuring that 70 

features of interest were minimally correlated (see Supplementary Methods). 18 common 71 

activities based on the National Bureau of Labor Statistics’ American Time Use Survey (ATUS, 72 

2019) were represented (Table 1; see Methods, section Behavior: Stimuli). The two stimulus sets 73 

contained 152 videos (8 videos per activity and 8 additional videos with no agents) and 65 videos 74 

(3-4 videos per activity) respectively. The second set was used to replicate behavioral results in a 75 

separate experiment with different stimuli and participants.  76 

Naturalistic videos of actions can vary along numerous axes, including visual features (e.g. the 77 

setting in which the action takes place), action-specific features (e.g. semantic action category), 78 

and social-affective features (e.g. the number of agents involved or perceived arousal). To 79 

evaluate these different axes, we quantified 17 visual, action-related and social-affective features 80 

using image properties, labels assigned by experimenters, and behavioral ratings collected in 81 

online experiments (Figure 1a). Visual features ranged from low-level (e.g. pixel values) to high-82 

level (e.g. activations from the final layer of a pretrained neural network). Action-related features 83 

included transitivity (object-relatedness), activity (the amount of activity in a video), effectors 84 

(body parts involved), and action category based on the American Time Use Survey (ATUS, 85 

2019). Finally, social-affective features included sociality, valence, arousal and number of agents 86 
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(see Methods, section Representational similarity analysis). Representational dissimilarity 87 

matrices (RDM) were created for each feature by calculating pairwise Euclidean distances 88 

between all videos. 89 

In both video sets there were only weak correlations between visual features and the higher-level 90 

action/social-affective features (Figure 1a). The highest correlations were those within each of 91 

the three sets of features, including visual features (Exp 1: Conv1 and image saturation/gist, 92 

𝜏!=0.29; Exp 2: Conv1 and image hue, 𝜏!=0.32), action features (Exp 1: arousal and activity, 93 

𝜏!=0.31; Exp 2: activity and effectors, 𝜏!=0.33) and social features (sociality and number of 94 

agents; Exp 1: 𝜏!=0.31, Exp 2: 𝜏!=0.3).  95 

 96 

 97 

Figure 1. Quantifying visual, social-affective and action features in the two stimulus sets. a. Correlations between 98 
feature RDMs. Note the low correlations between visual features and action/social-affective features (white 99 

rectangle). b. Behavioral rating distributions in the two stimulus sets (plots: Allen et al., 2019). 100 

The distributions of action and social-affective features were not significantly different between 101 

the two stimulus sets (all Mann-Whitney z<1.08, P>0.28). The width of these distributions 102 

suggests that the stimuli spanned a wide range along each feature (Figure 1b). In both 103 

experiments, transitivity was notable through its bimodal distribution, likely reflecting the 104 

presence or absence of objects in scenes, while other features had largely unimodal distributions. 105 

 106 
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Individual feature contributions to behavioral similarity 107 

To characterize human action representations, we collected behavioral similarity ratings for all 108 

pairs of videos in each set in two multiple arrangement experiments (see Methods, section 109 

Multiple arrangement). Participants arranged videos according to their similarity inside a circular 110 

arena (Figure 2). The task involved arranging different subsets of 3-8 videos until sufficiently 111 

reliable distance estimates were reached for all pairs of videos. Videos would play on hover, and 112 

participants had to play and move each video to proceed to the next trial. In Experiment 1, 113 

participants arranged different subsets of 30 videos out of the total 152, while in Experiment 2, 114 

participants arranged all 65 videos. To emphasize natural behavior, participants were not given 115 

specific criteria to use when judging similarity. Behavioral RDMs containing the Euclidean 116 

distances between all pairs of stimuli were reconstructed from each participant’s multiple 117 

arrangement data using inverse MDS (Kriegeskorte and Mur, 2012). 118 

 119 

Figure 2. Experimental and analysis pipeline for evaluating the contribution of different features to action 120 
representations. Above: a multiple arrangement task was used to generate behavioral RDMs in the two behavioral 121 

experiments. Below: EEG data was recorded during a one-back task, and time-resolved neural RDMs were 122 
generated using pairwise decoding accuracies. Cross-validated variance partitioning was used to assess the unique 123 
contributions of visual, social-affective, and action features to the behavioral and neural RDMs, quantified as the 124 
predicted squared Kendall’s 𝜏!. The stimuli in this figure are public domain images similar to the types of videos 125 

used in the experiments. 126 
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Data reliability was quantified using leave-one-subject-out correlations of the similarity ratings 127 

and was above chance in both experiments (Kendall’s 𝜏! = 0.13±0.08 and 0.18±0.08 128 

respectively, both P<0.001, permutation testing; Supplementary Figure 1a). Reliability was 129 

significantly higher in Experiment 2 than in Experiment 1 (Mann-Whitney z=3.21, P=0.0013), 130 

potentially reflecting differences in both participant pools and sampling methods (subsets of 131 

videos in Experiment 1 versus full video dataset in Experiment 2; see Methods, section Multiple 132 

arrangement). 133 

We assessed the contribution of 17 different visual, social, and action features to behavior in 134 

both experiments by correlating each feature RDM to each participant’s behavioral RDM 135 

(Supplementary Table 2). In Experiment 1 (Figure 3), only two visual features were significantly 136 

correlated with the behavioral RDMs (environment and activations from the final fully-137 

connected layer FC8 of AlexNet). However, there were significant correlations between 138 

behavioral RDMs and all action-related RDMs (action category, effectors, transitivity and 139 

activity), as well as all social-affective RDMs (valence, arousal, sociality and number of agents).  140 

 141 

Figure 3. Feature contributions to behavioral similarity. The correlations between each feature RDM and the 142 
behavioral RDMs are plotted against the noise ceiling (gray). Each dot is an individual subject. Asterisks denote 143 

significance (P<0.005).  144 
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In Experiment 2, the only visual feature that contributed to behavior was the final fully-145 

connected layer of AlexNet (Figure 3). Among action features, only effectors and activity were 146 

significantly correlated with the behavioral RDMs. However, we found significant correlations 147 

with all social-affective features. The results thus converge across both experiments in 148 

suggesting that social-affective and, to a lesser extent, action-related features, rather than visual 149 

properties, explain behavioral similarity. 150 

Social-affective features explain the most unique variance in behavioral representations 151 

We performed a cross-validated variance partitioning analysis (Groen et al., 2018; Lescroart et 152 

al., 2015; Tarhan et al., 2021) to determine which features contributed the most unique variance 153 

to behavior (see Methods, section Variance partitioning). We selected the ten features that 154 

contributed significantly to behavior in either experiment, i.e. two visual features (environment 155 

and layer FC8 of AlexNet) and all action and social-affective features. To keep the analysis 156 

tractable and understand the contribution of each type of information, we grouped these features 157 

according to their type (visual, action and social-affective) and used them as predictors in a 158 

cross-validated hierarchical regression (Figure 4). Note that there was no collinearity among the 159 

ten predictors, with an average variance inflation factor of 1.34 (Experiment 1) and 1.37 160 

(Experiment 2).  161 

 162 
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Figure 4. Social-affective features explain behavior better than visual and action features. The unique variance 163 
explained by visual, action, and social-affective features is plotted against the split-half reliability of the data (gray). 164 

Significant differences are marked with asterisks (all P<0.001).  165 

Together, the ten predictors explained most of the systematic variance in behavior. In 166 

Experiment 1, the predicted squared Kendall’s 𝜏! of the full model was higher on average than 167 

the true split-half squared correlation (𝜏!"=0.06±0.001 and 𝜏!"=0.04±0.002 respectively). This is 168 

likely to be due to the lower reliability of the behavioral similarity data in this experiment, and 169 

suggests that the ten predictors are able to explain the data well despite the overall lower 170 

prediction accuracy. In Experiment 2, the full model achieved a predicted 𝜏!" of 0.18±0.1 on 171 

average, compared to a true squared correlation of 0.25±0.1, suggesting that the ten predictors 172 

explain most of the variance (73.21%) in the behavioral data. 173 

In both experiments, social-affective features contributed significantly more unique variance to 174 

behavior than visual or action features (Figure 4, all Wilcoxon z>5.5, all P<0.001).  While all 175 

three groups of features contributed unique variance to behavior in Experiment 1 (all P<0.001, 176 

randomization testing), in Experiment 2, only social-affective features contributed significantly 177 

to behavior (P<0.001), while visual and action features did not (P=0.06 and P=0.47 178 

respectively). Shared variance between feature groups was not a significant contributor in either 179 

dataset. 180 

The semantic RDM included among the action features was a categorical model based on 181 

activity categories (ATUS, 2019). To assess whether a more detailed semantic model would 182 

explain more variance in behavior, we generated a feature RDM using WordNet similarities 183 

between the verb labels corresponding to the videos in the Moments in Time dataset. However, 184 

replacing the action category RDM with the WordNet RDM did not increase the variance 185 

explained by action features (Supplementary Figure 2). 186 

Among the social-affective features we tested, the number of agents could be seen as straddling 187 

the visual and social domains. To assess whether our results were driven by this feature, we 188 

performed a control variance partitioning analysis pitting the number of agents against the other, 189 

higher-level social-affective features (Supplementary Figure 3). In both experiments, the higher-190 
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level features (sociality, valence and arousal) contributed more unique variance than the number 191 

of agents, suggesting that our results are not explained by purely visual factors. 192 

 193 

EEG patterns reflect behavioral similarity 194 

We performed an EEG experiment to investigate how action-relevant features are processed over 195 

time. Participants viewed 500 ms segments of the 152 videos from Experiment 1 and performed 196 

a one-back action task in which they detected repetitions of the action category (see Methods, 197 

section EEG: Experimental procedure). To relate neural patterns to behavioral and feature 198 

RDMs, we computed time-resolved neural RDMs for each participant using decoding accuracies 199 

between all pairs of videos (Figures 2, 5a). The time-course of decoding performance was similar 200 

to that observed in previous E/MEG studies using still visual stimuli (Carlson et al., 2013; Cichy 201 

et al., 2014; Dima et al., 2018; Greene and Hansen, 2018; Isik et al., 2014). Decoding accuracy 202 

rose above chance at 50 ms after video onset, reached its maximum at 98 ms (63.88±6.82% 203 

accuracy), and remained above chance until 852 ms after video onset (cluster-corrected P<0.05, 204 

sign permutation testing).  205 

 206 

Figure 5. The features that explain behavioral action representations also contribute to neural representations. a. 207 
Time-course of video decoding accuracy, averaged across all pairs of videos and participants (in gray: SEM across 208 

participants). The horizontal line marks above-chance performance (sign permutation testing, cluster-corrected 209 
P<0.05). b. Behavioral similarity correlates with the neural RDM. The noise ceiling is shown in light blue (leave-210 

one-subject out correlation, mean±SD). Horizontal lines mark significant time windows (P<0.05, cluster-corrected). 211 
c. The distribution of significant correlation onsets for each feature model across 1000 bootstrapping iterations 212 

(P<0.05, cluster-corrected). Color rectangles show 90% confidence intervals. 213 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465740
http://creativecommons.org/licenses/by-nc-nd/4.0/


To assess brain-behavior correlations, we related the average behavioral RDM obtained in 214 

Experiment 1 to the time-resolved neural RDMs (Kendall’s 𝜏!). The behavioral RDM correlated 215 

significantly with neural patterns during a cluster between 62 and 766 ms after video onset 216 

(Figure 5b), suggesting that the features guiding the intuitive categorization of naturalistic 217 

actions also underlie their neural organization.  218 

Neural timescale of individual feature representations       219 

We assessed the correlations between EEG patterns and the ten feature RDMs found to 220 

contribute to behavior in Experiment 1. We also included an additional feature RDM based on 221 

the first convolutional layer of AlexNet, which best captures early visual neural responses 222 

(Supplementary Figure 7; see Methods, section Multivariate analysis). The feature RDMs that 223 

contributed to behavioral similarity also correlated with the EEG patterns (Supplementary 224 

Figures 7-9), with a single exception (sociality).  225 

A bootstrapping analysis of the cluster onsets of these correlations (Figure 5c) suggests a 226 

progression from visual to action and social-affective features. Visual predictors correlated with 227 

the neural patterns between 65±15 ms (mean ± SD, Conv1) and 84±62 ms (Environment), 228 

while action category also had an early onset (58±9 ms). Other action-related features, however, 229 

emerged later (transitivity: 170±67 ms, effectors: 192±94 ms, activity: 345±133 ms). Among 230 

social-affective features, the number of agents had the earliest correlation onset (178±81 ms), 231 

while valence and arousal emerged later (395±81 and 404±91 ms respectively). Importantly, 232 

these features are spontaneously extracted in the brain, as none of them, with the exception of 233 

action category, were directly probed in the one-back task performed by participants. In addition, 234 

all features were extracted during behaviorally relevant time windows (Figure 5b). 235 

A temporal hierarchy in action perception 236 

A cross-validated variance partitioning analysis revealed different stages in the processing of 237 

naturalistic actions (Figure 6). Visual features dominated the early time windows (66-138 ms 238 

after video onset). Action features also contributed a significant amount of unique variance (162-239 

598 ms), as well as variance shared with social-affective features (354-598 ms; Supplementary 240 

Figure 5). Finally, social-affective features independently predicted late neural responses (446-241 
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782 ms). Importantly, visual features did not share a significant amount of variance with either 242 

action or social-affective features. 243 

An analysis of effect onsets across 100 split-half iterations points to the hierarchical processing 244 

of these features, with a progression from visual to action to social-affective features. Social-245 

affective features (mean onset 418±89 ms) contributed unique variance significantly later than 246 

other feature sets, while action features (245±104 ms) came online later than visual features 247 

(65±8 ms; all Wilcoxon z>7.27, P<0.001; Figure 6b). A fixed-effects analysis revealed the same 248 

order of feature information with larger effect sizes (Supplementary Figure 6). 249 

 250 

Figure 6. Hierarchical processing of visual, action, and social-affective features. a. Unique variance explained by 251 
each group of features over time. The split-half reliability of the data is shown in gray (shaded area; see also Figure 252 

5b). b. The distribution of effect onsets across 100 split-half iterations. Color rectangles show 90% confidence 253 
intervals. 254 

Discussion 255 

Here, we used a large-scale naturalistic stimulus set to disentangle the roles of different features 256 

in action perception. Two novel findings emerge from our study. First, our behavioral results 257 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465740
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggest that social-affective features play the most important role in how we organize naturalistic 258 

everyday actions, above and beyond fundamental visual and action features like scene setting or 259 

action category. Second, these behaviorally-relevant features are spontaneously extracted in the 260 

brain, and follow a hierarchical sequence from visual to action-related and culminating with 261 

social-affective features. These results offer an account of how internal representations of 262 

everyday actions emerge in the mind and brain. 263 

Behavioral representations: what features support action perception? 264 

Across two separate multiple arrangement experiments with large-scale naturalistic stimulus sets, 265 

we found that social-affective features predicted similarity judgments better than, and 266 

independently of, visual and action-related features. By sampling a comprehensive feature space 267 

ranging from low-level to conceptual, we were able to distinguish between components that 268 

often covary, such as scene setting and action category or sociality and transitivity. Previous 269 

studies have operationalized features in different ways, and an exhaustive investigation is thus 270 

difficult; however, our approach of including several important features from each group 271 

mitigated this, as suggested by the high amount of variance in behavior collectively explained by 272 

our features. 273 

Our work adds to a growing body of evidence for the importance of social features in action 274 

perception, and extends it by disentangling the contributions of specific social and semantic 275 

features. Previous work has highlighted sociality as an essential feature in neural action 276 

representations (Tarhan and Konkle, 2020; Wurm et al., 2017; Wurm and Caramazza, 2019) and 277 

a recent study (Tarhan et al., 2021) found that behavioral action similarity judgments were better 278 

explained by similarity in actors’ goals than by visual similarity. In line with this work, we found 279 

a minimal contribution of visual features to action similarity judgments. In contrast, all of our 280 

social-affective features – the number of agents, sociality, valence, and arousal – were 281 

significantly correlated with behavioral similarity. Furthermore, only two individual action-282 

related features replicated across the two experiments: the amount of activity and the effector 283 

(body part) feature, the latter of which is highly relevant to the actors’ goals. This could be 284 

interpreted as further evidence for the importance of socially-relevant features in our internal 285 
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representations of actions, and identifies specific social and goal-related features that are 286 

important for action understanding.   287 

A hypothesis-driven approach will always pose challenges, due to practical limitations in the 288 

number of feature spaces one can feasibly test. Our approach of grouping predictors together 289 

based on theoretical distinctions made it possible to rigorously evaluate the unique contributions 290 

of different types of features, which is an essential first step in understanding naturalistic action 291 

representations. This analysis revealed that social-affective features contributed the most unique 292 

variance in both experiments, suggesting that they robustly predict behavioral similarity 293 

judgments, while visual and action features explained little unique variance in either experiment 294 

(Figure 4). 295 

Our social-affective feature space included one feature that could be construed as a perceptual 296 

precursor to sociality, namely the number of agents in each video. Indeed, previous fMRI work 297 

has suggested that neural representations of actions in the visual system reflect perceptual 298 

precursors of social features, rather than higher-level social features (Wurm and Caramazza, 299 

2019). Here, we found that high-level social-affective features (sociality, valence and arousal) 300 

contributed significantly to behavior independently of the number of agents. Further, these high-301 

level social-affective features explained significantly more unique variance in behavior than the 302 

number of agents in both experiments (Supplementary Figure 3). Our findings suggest that high-303 

level social-affective features uniquely drive human action representations.  304 

Neural representations: how does action perception unfold over time? 305 

Using EEG, we tracked the temporal dynamics of naturalistic action perception. Using 306 

naturalistic stimuli and a rich feature space enabled us to disentangle the contributions of 307 

different features and investigate their relative timing. Visual, action, and social-affective 308 

features made unique contributions to the EEG patterns at different processing stages, revealing a 309 

representational hierarchy of spontaneously-extracted features. 310 

Almost all behaviorally-relevant features correlated with the EEG patterns, with action-related and 311 

social-affective features emerging later than visual features (Figure 5c). Most action-related features 312 

emerged within 200 ms, on the timescale of feedforward processing, which is consistent with prior work 313 
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showing invariant responses to actions as early as 200 ms (Isik et al., 2018; Tucciarelli et al., 2015), and 314 

action transitivity processing as early as 250 ms (Wamain et al., 2014). Among social-affective features, 315 

the number of agents emerged earliest (162 ms), pointing to the role of this feature as a perceptual 316 

precursor in social perception (Papeo, 2020; Wurm and Caramazza, 2019). Valence and arousal emerged 317 

later, around 400 ms after video onset. Interestingly, sociality, which has been highlighted as an 318 

important dimension in previous fMRI work on action perception (Tarhan and Konkle, 2020; Wurm et 319 

al., 2017), did not correlate with the EEG patterns. While the absence of an effect does not preclude the 320 

possibility that this feature is being processed, it is possible that prior work has confounded sociality 321 

with other correlated social-affective features (such as the number of agents, or arousal).  322 

Variance partitioning revealed a clear temporal progression from visual features (~100 ms) to 323 

action features (~150-600 ms) to social-affective features (~400-600 ms). Importantly, these 324 

processing stages emerged after partialling out the contributions of other groups of predictors in 325 

a cross-validated analysis, validating our a priori distinctions between feature classes. These 326 

findings suggest that the extraction of visual features occurs rapidly, within 200 ms, and is likely 327 

supported by feedforward computations. The social-affective features that support behavioral 328 

representations, however, were extracted last. This is consistent with theories suggesting that 329 

internal visual experience reverses the stages of perceptual processing (Dijkstra et al., 2020; 330 

Hochstein and Ahissar, 2002). Specifically, it was the final, social-affective stage of neural 331 

processing that was reflected in the intuitive behavioral representations, and not the initially 332 

extracted visual features. Furthermore, action-related features were extracted significantly before 333 

social-affective features, suggesting the two are not extracted in parallel, but instead pointing to a 334 

hierarchy in which both visual and action-related features may contribute to socially relevant 335 

computations.  336 

Our results add temporal characterization to previous fMRI findings, suggesting that the 337 

seemingly conflicting features revealed by previous studies, like sociality (Tarhan and Konkle, 338 

2020) or semantic action category (Tucciarelli et al., 2019), emerge at different stages during 339 

action observation. Thus, the existence of different organizing dimensions can be explained not 340 

just through spatial segregation within and across brain areas, but also through a temporal 341 

gradient starting with visual features and concluding with behaviorally-relevant social 342 

representations. More work is needed to understand where these dynamic representations emerge 343 
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in the brain, and whether they are supported by overlapping or distinct networks. Future research 344 

could test this using EEG-fMRI fusion to track the spatiotemporal dynamics of action 345 

representations.  346 

Actions in context 347 

As real-world actions tend to occur in a rich social context, studies of action perception should 348 

consider social features and the interactions between different systems for perceiving actions, 349 

agents and their mental states (Quadflieg and Koldewyn, 2017). Recent works suggests that 350 

social perception enhances visual processing (Bellot et al., 2021; Papeo, 2020) and recruits 351 

dedicated neural circuits (Isik et al., 2017; Pitcher and Ungerleider, 2021). Our findings open 352 

exciting new avenues for connecting these areas of research. For example, future studies could 353 

more explicitly disentangle the perceptual and conceptual building blocks of social and affective 354 

features, such as body posture or facial expression, and their roles in action and interaction 355 

perception.  356 

One fundamental question that lies at the root of this work is how actions should be defined and 357 

studied. Here, we adopted a broad definition of the term, focusing on activities as described in 358 

the American Use Survey (ATUS, 2019). Although our stimuli were selected to clearly depict 359 

short, continuous actions performed by visible agents, their naturalistic and context-rich nature 360 

means that they could be understood as “events”, encompassing elements that are not singularly 361 

specific to actions. A wealth of evidence has shown that context changes visual processing in a 362 

non-additive way (Bar, 2004; Willems and Peelen, 2021), and emerging evidence suggests that 363 

the same is true for actions (Wurm et al., 2012). Studying actions in context holds promise for 364 

understanding how semantically rich representations emerge in naturalistic vision. This, in turn, 365 

will pave the way towards a computational understanding of the neural processes that link 366 

perception and cognition. 367 
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Methods 368 

Behavior: Stimuli  369 

We curated two stimulus sets containing three-second videos of everyday actions from the 370 

Moments in Time dataset (Monfort et al., 2019). To broadly sample the space of everyday 371 

actions, we first identified the most common activities from the National Bureau of Labor 372 

Statistics’ American Time Use Survey (ATUS, 2019). We adjusted this list to include both social 373 

and non-social activities that lend themselves to visual representation (Table 1). In particular, 374 

“educational activities” were included both under “working” and a more specific “instructing” 375 

category. In addition, some broad categories (“leisure and sports”, “household activities”) were 376 

split into more specific ones. Finally, we added a “fighting” category to capture unpleasant social 377 

interactions, and a “driving” category (as travel was only included under “other activities”) .  378 

Activity Verb labels 
Childcare / taking care of children crying, cuddling, feeding, giggling, socializing 
Driving driving, socializing 
Eating chewing, eating 
Fighting fighting 
Gardening gardening, mowing, planting, shoveling, weeding 
Grooming bathing, brushing, combing, trimming, washing 
Hiking hiking 
Housework cleaning, dusting, repairing, scrubbing, vacuuming 
Instructing instructing, teaching 
Playing games gambling, playing+fun, playing+videogames, socializing 
Preparing food barbecuing, boiling, chopping, cooking, frying, grilling, rinsing, stirring 
Reading reading 
Religious activities praying, preaching 
Sleeping resting, sleeping 
Socializing and social events celebrating, dancing, marrying, singing, socializing, talking  
Sports exercising, playing+sports, swimming, throwing 
Telephoning calling, telephoning  
Working working 
Control videos  blowing, floating, raining, shaking 

 379 

Table 1.  Activities from the ATUS included in each of the two stimulus sets, with the corresponding verb labels 380 
from the Moments in Time dataset. Note that control videos were only included in the first dataset. 381 
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We curated an initial set of approximately 500 videos from the Moments in Time dataset (see 382 

Supplementary Methods) by identifying the verb labels relevant to our chosen activities. We then 383 

selected two subsets of videos (1) that sampled all activities in a balanced manner, and (2) where 384 

sociality (as assessed through behavioral ratings, see below Section 2.3) was minimally 385 

correlated to the number of agents (experimenter-labeled). For more details see Supplementary 386 

Methods. These two features are difficult to disentangle in naturalistic stimulus sets, and we were 387 

able to minimize, though not fully eliminate, this correlation (Figure 1a). 388 

The first stimulus set contained 152 videos (8 videos per activity and 8 additional videos with no 389 

agents) and was used in Experiment 1. The second stimulus set contained 65 videos (3-4 videos 390 

per activity) and was used in Experiment 2. The videos were preprocessed to a framerate of 30 391 

frames-per-second and resized to 600 x 400 pixels. 392 

Behavior: Participants 393 

Behavioral ratings 394 

A total of 256 workers (202 after exclusions, located in the United States, worker age and gender 395 

not recorded) from the online platform Amazon Mechanical Turk provided sociality, valence, 396 

arousal, and activity ratings of the video stimuli, and 43 workers (35 after exclusions) provided 397 

transitivity ratings.  398 

Multiple arrangement 399 

Two separate online multiple arrangement experiments were performed on each of the two 400 

stimulus sets. A total of 374 workers from Amazon Mechanical Turk took part in Experiment 1 401 

(300 after exclusions, located in the United States, worker age and gender not recorded). 402 

Experiment 2 involved 58 participants (53 after exclusions, 31 female, 20 male, 1 non-binary, 1 403 

not reported, mean age 19.38±1.09) recruited through the Department of Psychological and 404 

Brain Sciences Research Portal at Johns Hopkins University.  405 

All procedures for online data collection were approved by the Johns Hopkins University 406 

Institutional Review Board and informed consent was obtained from all participants. 407 
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Behavior: Experimental procedure 408 

Behavioral ratings 409 

Participants viewed subsets of 30-60 videos from the initially curated large-scale set and rated 410 

the events depicted on a five-point scale. In a first set of experiments, the dimensions rated were: 411 

sociality (how social the events were, from 1 – not at all to 5 – very social); valence (how 412 

pleasant the events were, from 1 – very unpleasant to 5 – very pleasant); arousal (how intense the 413 

events were, from 1 – very calm to 5 – very intense); and activity (how active they were, from 1 414 

– no action to 5 – very active). In separate experiments, participants provided transitivity ratings 415 

for the two final stimulus sets (i.e. to what extent the actions involved a person or people 416 

interacting with an object, from 1 – not at all to 5 – very much). This amounted to an average of 417 

17.46±2.14 ratings per video (Experiment 1) and 18.22±2.09 ratings per video (Experiment 2). 418 

The experiments were implemented in JavaScript using the jsPsych library (de Leeuw, 2015). 419 

Multiple arrangement 420 

To characterize human action representations, we collected behavioral similarity ratings using 421 

two multiple arrangement experiments. The experiments were conducted on the Meadows 422 

platform (www.meadows-research.com) and required participants to arrange the videos 423 

according to their similarity inside a circular arena. Participants were free to use their own 424 

criteria to determine similarity, so as to encourage natural behavior. 425 

Each trial started with the videos arranged around the circular arena. The videos would start 426 

playing on hover, and the trial would not end until all videos were played and dragged-and-427 

dropped inside the arena (Figure 2). Different sets of videos were presented in different trials. An 428 

adaptive “lift-the-weakest” algorithm was used to resample the video pairs placed closest 429 

together, so as to gather sufficient evidence (or improve the signal-to-noise ratio) for each pair. 430 

This procedure was repeated until an evidence criterion of 0.5 was reached for each pair, or until 431 

the experiment timed out (Experiment 1: 90 minutes, Experiment 2: 120 minutes). By asking 432 

participants to zoom into the subsets previously judged as similar, the task required the use of 433 

different contexts and criteria to judge relative similarities. Compared to other methods of 434 

measuring similarity, multiple arrangement thus combines efficient sampling of a large stimulus 435 
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set with adaptive behavior that can recover a multi-dimensional similarity structure 436 

(Kriegeskorte and Mur, 2012). 437 

In Experiment 1, participants arranged different subsets of 30 videos from the 152-video set, 438 

with a maximum of 7 videos shown in any one trial. The stimuli were sampled in a balanced 439 

manner across participants. The task took on average 32±14.4 minutes and 86.8±22.6 trials. 440 

In Experiment 2, all participants arranged the same 65 videos (entire 65-video set), with a 441 

maximum of 8 videos shown in any one trial. The task took on average 87.5±24.6 minutes, 442 

including breaks, and 289.7±57.3 trials.  443 

Both experiments included a training trial in which participants arranged the same 7 videos 444 

before beginning the main task. Participants were excluded from further analysis if there was a 445 

low correlation between their training data and the average of all other participants’ data (over 2 446 

standard deviations below the mean). They were also excluded if they responded incorrectly to a 447 

catch trial requiring them to label the action in previously seen videos. 448 

Inverse MDS was used to construct behavioral dissimilarity matrices containing normalized 449 

Euclidean distances between all pairs of videos (Kriegeskorte and Mur, 2012). In Experiment 1, 450 

the behavioral RDM contained 11476 pairs with an average of 11.37±3.08 ratings per pair; in 451 

Experiment 2, there were 2080 pairs rated by all 53 participants.  452 

Behavior: Data analysis 453 

Representational similarity analysis 454 

Everyday actions can be differentiated along numerous axes. Perceptually, they can differ in 455 

terms of visual properties, like the setting in which they take place. They can also be 456 

characterized through action-related features like semantic action category, or through social 457 

features, like the number of agents involved. Understanding how these features contribute to 458 

natural behavior can shed light on how naturalistic action representations are organized. Here, 459 

we used representational similarity analysis (RSA) to assess the contribution of visual, action, 460 

and social-affective features to the behavioral similarity data.  461 
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We quantified features of interest using image properties, labels assigned by experimenters, and 462 

behavioral ratings (provided by participants, see above Section 2.3). We calculated the Euclidean 463 

distances between all pairs of stimuli in each feature space, thus generating 17 feature RDMs.   464 

To quantify visual features, image properties were extracted separately for each frame of each 465 

video and averaged across frames. These included pixel value, hue, saturation, motion energy 466 

(the magnitude of the optic flow estimated using the Horn-Schunck method), and the spatial 467 

envelope of each image quantified using GIST (Oliva and Torralba, 2001). We also extracted 468 

activations from the first convolutional layer and last fully-connected layer of a pre-trained 469 

feedforward convolutional neural network (AlexNet; Krizhevsky et al., 2012). Two additional 470 

experimenter-labeled features were included: scene setting (indoors/outdoors) and the presence 471 

of a watermark. 472 

Action feature RDMs were based on transitivity and activity ratings (provided by participants, 473 

see above), as well as action category (a binary RDM clustering the stimuli into activity 474 

categories based on the initial dataset designations) and effectors (experimenter-labeled). The 475 

latter consisted of binary vectors indicating the involvement of body parts in each action 476 

(face/head, hands, arms, legs, and torso). To assess whether a more detailed semantic model 477 

would capture more information, we also performed a control analysis using a feature RDM 478 

based on WordNet similarities between the verb labels in the “Moments in Time” dataset 479 

(Supplementary Figure 2). 480 

Social-affective feature RDMs were based on sociality, valence, and arousal ratings (all provided 481 

by participants, see Behavioral Ratings above) and the number of agents in each video, which 482 

was labeled by experimenters on a four-point scale (from 0, no agent present, to 3, three or more 483 

agents present).  484 

Each subject’s behavioral RDM was correlated to the feature RDMs, and the resulting Kendall’s 485 

𝜏! values were tested against chance using one-tailed sign permutation testing (5000 iterations). 486 

P-values were omnibus-corrected for multiple comparisons using a maximum correlation 487 

threshold across all models (Nichols and Holmes, 2001). 488 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465740
http://creativecommons.org/licenses/by-nc-nd/4.0/


A noise ceiling was calculated by correlating each subject’s RDM to the average RDM (upper 489 

bound), as well as to the average RDM excluding the left-out subject (lower bound; Nili et al., 490 

2014). 491 

Variance partitioning 492 

Despite low correlations between features of interest in both stimulus sets (Figure 1a), shared 493 

variance could still contribute to the representational similarity analysis results. To estimate the 494 

unique contributions of the three primary groups of features, we performed a cross-validated 495 

variance partitioning analysis, excluding individual features that did not correlate with the 496 

behavioral data in the above RSA analysis. The three groups included: visual features (scene 497 

setting and the last fully-connected layer of AlexNet), action features (action category, effectors, 498 

transitivity, action), and social-affective features (number of agents, sociality, valence, arousal).  499 

The behavioral data were randomly split into training and test sets (100 iterations) by leaving out 500 

half of the individual ratings for each pair of videos in Experiment 1 (since different participants 501 

saw different subsets of videos) or half of the participants in Experiment 2. We fit seven different 502 

regression models using the average training RDM (with every possible combination of the three 503 

groups of features), and we calculated the squared Kendall’s 𝜏! between the predicted responses 504 

and the average test RDM. These values were then used to calculate the unique and shared 505 

portions of variance contributed by the predictors (Groen et al., 2018; Lescroart et al., 2015; 506 

Tarhan et al., 2021). 507 

The resulting values were tested against chance using one-tailed sign permutation testing (5000 508 

iterations, omnibus-corrected for multiple comparisons). Differences between groups of features 509 

were assessed with two-sided Wilcoxon signed-rank tests. 510 

EEG: Stimuli 511 

The stimulus set from behavioral Experiment 1 was used in the EEG experiment, containing 152 512 

videos from 18 categories, as well as control videos. The three-second stimuli were trimmed to a 513 

duration of 0.5 seconds centered around the action to improve time-locking to the EEG signals 514 

and allow for a condition-rich experimental design. An additional 50 videos were included as 515 

catch stimuli (25 pairs depicting the same action, manually chosen from the larger stimulus set). 516 
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EEG: Participants 517 

Fifteen participants (6 female, 9 male, mean age 25.13±6.81) took part in the EEG experiment. 518 

All participants were right-handed and had normal or corrected-to-normal vision. Informed 519 

consent was obtained in accordance with the Declaration of Helsinki and all procedures were 520 

approved by the Johns Hopkins University Institutional Review Board.  521 

EEG: Experimental procedure 522 

Continuous EEG recordings with a sampling rate of 1000 Hz were made with a 64-channel Brain 523 

Products ActiCHamp system using actiCAP electrode caps in a Faraday chamber. Electrode 524 

impedances were kept below 25 k𝛺 when possible and the Cz electrode was used as an online 525 

reference.  526 

Participants were seated upright while viewing the videos on a back-projector screen situated 527 

approximately 45 cm away. The 152 videos were shown in pseudorandom order in each of 10 528 

blocks with no consecutive repetition allowed. In addition, four repetitions of the 25 catch video 529 

pairs were presented at random times during the experiment, with the pairs shuffled to minimize 530 

learning effects. Participants performed a one-back task and were asked to press a button on a 531 

Logitech game controller when they detected two consecutive videos showing the same action. 532 

There was a break every 150 trials and participants could continue the experiment by pressing a 533 

button. In total, the experiment consisted of 1720 trials (1520 experimental trials and 200 catch 534 

trials) and took approximately 45 minutes. 535 

Each trial started with a black fixation cross presented on a gray screen for a duration chosen 536 

from a uniform distribution between 1 and 1.5 s, followed by a 0.5 s video. The stimuli were 537 

presented on the same gray background and subtended approximately 15 x 13 degrees of visual 538 

angle. The fixation cross remained on screen and participants were asked to fixate throughout the 539 

experiment. A photodiode was used to accurately track on-screen stimulus presentation times 540 

and account for projector lag. The paradigm was implemented in MATLAB R2019a using the 541 

Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). 542 
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EEG: Data analysis 543 

Preprocessing 544 

EEG data preprocessing was performed using MATLAB R2020b and the FieldTrip toolbox 545 

(Oostenveld et al., 2011). First, the EEG data were aligned to stimulus onset using the 546 

photodiode data to correct for any lag between stimulus triggers and on-screen presentation. The 547 

aligned data were segmented into 1.2 s epochs (0.2 s pre-stimulus to 1 s post-stimulus onset), 548 

baseline-corrected using the 0.2 s prior to stimulus onset, and high-pass filtered at 0.1 Hz. 549 

Artefact rejection was performed using a semi-automated pipeline. First, the data were filtered 550 

between 110 and 140 Hz and Hilbert-transformed to detect muscle artefacts; segments with a z-551 

value cutoff above 15 were removed. Next, channels and trials with high variance were manually 552 

rejected based on visual inspection of a summary plot generated using the ft_rejectvisual 553 

function in FieldTrip. Finally, independent component analysis (ICA) was performed to identify 554 

and remove eye movement components from the data.  555 

Catch trials were removed from the data together with any trials that elicited a button response 556 

(13.74%±1.82% of all trials). Of the remaining trials, 8.36%±5.01% (ranging between 25 and 557 

275 trials) were removed during the artefact rejection procedure. A maximum of two noisy 558 

electrodes were removed from eight participants’ datasets. 559 

Prior to further analysis, the data were re-referenced to the median across all electrodes, low-pass 560 

filtered at 30 Hz to investigate evoked responses and downsampled to 500 Hz. 561 

Multivariate analysis 562 

We performed multivariate analyses to investigate (1) whether EEG patterns reflected behavioral 563 

similarity, and (2) whether different visual, action, and social-affective features explained 564 

variance in the neural data.  565 

First, time-resolved decoding of every pair of videos was performed using a linear Support 566 

Vector Machine classifier as implemented in the LibSVM library (Chang and Lin, 2011). For 567 

each pair of videos, pseudotrials were created by splitting each participant’s single-trial data into 568 
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two subsets and averaging the trials in each subset to improve SNR (Isik et al., 2018). The two 569 

pseudotrials were used to train and test the classifier separately at each timepoint, and 570 

multivariate noise normalization was performed using the covariance matrix of the training data 571 

(Guggenmos et al., 2018). This procedure was repeated 10 times with different data splits. The 572 

average decoding accuracies between all pairs of videos were used to generate a time-resolved 573 

neural RDM for each participant, with decoding accuracy being used as a measure of 574 

dissimilarity. 575 

Next, we evaluated the correlations between each participant’s neural RDM and the feature 576 

RDMs found to correlate with behavioral similarity (Experiment 1). To investigate the link 577 

between behavioral and neural representations, we also correlated neural RDMs with the average 578 

behavioral RDM obtained from the multiple arrangement task in Experiment 1. This analysis 579 

was performed using 10 ms sliding windows with an overlap of 6 ms. The resulting Kendall’s 𝜏! 580 

values were tested against chance using one-tailed sign permutation testing (5000 iterations, 581 

cluster-corrected for multiple comparisons across time using the maximum cluster sum, 𝛼 = 582 

0.05, cluster-setting 𝛼 = 0.05). A noise ceiling was calculated using the same procedure as in the 583 

behavioral RSA (see above Section 2.4). Effect latencies were assessed by bootstrapping the 584 

individual correlations 1000 times with replacement to calculate 90% confidence intervals 585 

around effect onsets. 586 

To quantify the contributions of visual, social-affective, and action features to the neural RDMs, 587 

a time-resolved cross-validated variance partitioning procedure was performed. Using 100 split-588 

half cross-validation iterations, the neural RDM was entered as a response variable in a 589 

hierarchical regression with three groups of feature RDMs (visual, social-affective, and action) 590 

as predictors. This analysis employed the same ten feature RDMs used in the behavioral variance 591 

partitioning (see above Variance partitioning), with the addition of activations from the first 592 

convolutional layer of AlexNet (Conv1). As Conv1 best captures early visual responses 593 

(Supplementary Figure 7), its inclusion ensured that we did not underestimate the role of visual 594 

features in explaining neural variance. 595 

The analysis was carried out using 10 ms sliding windows with an overlap of 6 ms. The resulting 596 

predicted Kendall’s 𝜏! values were tested against chance using one-tailed sign permutation 597 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465740doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465740
http://creativecommons.org/licenses/by-nc-nd/4.0/


testing (5000 iterations, cluster-corrected for multiple comparisons using the maximum cluster 598 

sum across time windows and regressions performed, 𝛼 = 0.05, cluster-setting 𝛼 = 0.05). The 599 

distributions of effect onsets across the 100 split-half iterations were compared using two-sided 600 

Wilcoxon signed-rank tests.  601 

Data availability 602 

Behavioral and EEG data and results have been archived as an Open Science Framework 603 

repository (https://osf.io/hrmxn/). Analysis code is available on GitHub 604 

(https://github.com/dianadima/mot_action). 605 
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