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We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by
revisiting and reanalyzing experimental work from the visual, language and motor systems. A naive decomposi-
tion technique of electrocorticographic power spectral measurements reveals that broadband spectral changes
reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical
function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is con-
sistent with simple models of the dendritic integration of asynchronous local population firing. Because broad-
band spectral changes covary with diverse perceptual and behavioral states on the timescale of 20–50 ms,
they provide a powerful and widely applicable experimental tool.
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Introduction

When examining the extracellular voltage power spectrum of occip-
ital or Rolandic cortex, the shift from rest to task is strongly associated
with an increase in power at high frequencies (greater than ~50 Hz),
and often accompanied by a decrease in power at low frequencies
(less than ~30 Hz) (Aoki et al., 1999; Crone et al., 1998a,b, 2001;
Miller et al., 2007, 2010b). When we first investigated these signals,
our interpretationwas that there would be different high-frequency os-
cillations specific to each cortical region and function. However, in each
case thatwe examined thehigh-frequency spectral changes lacked a de-
finitive upper bound, and appeared to extend to the highest frequencies
resolvable with our sampling rate and noise floor.

This presented a pair of questions. First, might the high-frequency
spectral changes reflect a broadband change in the power spectrum?
Second, might this broadband change track asynchronous processes in
the underlying neuronal dynamics? In this paper, we review and
reanalyze data supporting the claim that broadband shifts are indeed
a generic marker of circuit activation in the neocortex (Manning et al.,
2009; Miller, 2010; Miller et al., 2009b,d; Ray and Maunsell, 2011;
Whittingstall and Logothetis, 2009). Moreover, we discuss how broad-
band spectral change can be obscured by rhythmic phenomena at
lower (e.g. α, β) frequencies, and we illustrate how the changes in
high frequencies are different in kind from changes in the canonical
lower-frequency rhythms.

Before describing the details of the broadband power shifts, it is im-
portant to distinguish rhythmic and non-rhythmic neural processes and
their manifestations in the field potential. Rhythmic processes (such as
the occipital α and peri-central motor β rhythms) exhibit band-limited
spectral peaks, reflective of a characteristic oscillatory time-scale (Bates,
1951; Crone et al., 1998b; Jasper, 1941; Jasper and Andrews, 1938;
Jasper and Penfield, 1949; Miller et al., 1940, 2007; Penfield, 1954;
Pfurtscheller, 1999). Non-rhythmic processes do not have an oscillatory
timescale and do not produce isolated peaks in the power spectrum.
Nonetheless, a non-rhythmic process may exhibit a distinctive spectral
profile, and changes in its amplitude will produce changes in the spec-
trum of the electrical field (Bullock et al., 2003).

We have proposed (Miller et al., 2009b) that the broadband “1/f”
background, ubiquitous in neocortical field spectra, reflects a non-
rhythmic underlying process with an intuitive connection to neuronal
population activity. In particular, the approximately power-law profile
of the broadband component can be understood as the signature of
the summation of asynchronously arriving synaptic inputs in the den-
drites of pyramidal neurons (Bedard et al., 2006; Miller et al., 2009b).
The dendritic summation model predicts a particular form of power-
law in the spectrum above 80 Hz, and this prediction matches the
empirical spectral profile to N500 Hz (once one corrects for gain-
modulation in amplifier hardware).

Regardless of the details of the biophysics that produce the broad-
band 1/f component, it is clear that (i) the underlying process is not
rhythmic and (ii) the process is strongly associated with the activation
of local circuits. Behavior-locked increases in the broadband component
have been demonstrated in peri-Rolandic cortex (during finger tapping)
and in the occipital lobe (duringvisual search) via intracranial recordings
Fig. 1. Decoupling the cortical spectrum to reveal broadband spectral change. Simple black-an
ECoG electrode on theparahippocampal gyrus. (A) Rawpotential,V, with time triggers, τq, in the
presentation are shownwith pink background, with house presentations in blue. The gray trigg
are extracted and Hann-windowed: V(τq + t)H(t). (C) The power spectral density (PSD) of eac
mean spectrum across trials of all types, and the log is taken, to produce the transformed PSD:Pð
blue/gray. (F) Principal spectral components, e!1; e!2; e!3 (in red, blue, and green; “PSCs”) of the
trum. The first is primarily broadband increase across all frequencies, whereas the 2nd to 4t
(G) Isolated broadband spectra for each stimulus type— the 2nd to 4th PSCs have been remove
is revealed during presentation of house stimuli. (H) Reconstructed power spectra of the 2nd to
are extracted from the raw spectra and observed here. (I) The dynamic power spectral density a
power spectrum is estimated at each point in time, using 7-cycle Morlet wavelets: P f ; tð Þ. (J)
exponentiated to obtain the timecourse of broadband spectral change, B(t). Comparison with
both face and house stimuli, but house stimuli more dramatically than face stimuli.
from the surface of the human neocortex (Miller et al., 2009c, 2010a).
More generally, task-locked power increases in the “high gamma” band
of the power spectrum (~80–200 Hz) are widely observed inmammali-
an cortical electrophysiology (Canolty et al., 2007; Crone et al., 1998a,
2001; Edwards et al., 2010; Foster et al., 2012; Gunduz et al., 2011;
Hermes et al., 2012; Jacobs and Kahana, 2009; Mesgarani and Chang,
2012; Miller et al., 2007; Pei et al., 2011; Sederberg et al., 2003; Swann
et al., 2009; Vidal et al., 2010). In many cases, these wide-band power
shifts are probably reflective of an underlying broadband shift, especially
when there is no band-limited peak observed above 80 Hz.

Direct support for the broadband model was provided by simulta-
neous measurements of unit activity and field potentials. Based on
2030 identified units across numerous human neocortical sites,
Manning et al. (2009) demonstrated a positive relationship between
the average firing rate of the units and the amplitude of the broadband
component. Recent work in macaque visual cortex found a robust rela-
tionship between broadband high-frequency power increases and sin-
gle unit activity, and was also able to separate the (non-rhythmic)
high-frequency broadband effect from those attributable to (rhythmic)
visual gamma (Ray and Maunsell, 2011).

Because rhythmic (band-limited) and non-rhythmic (broadband)
components of the power spectrum have distinct frequency profiles
and exhibit distinct task-related changes, they can be decoupled
from one another (Miller et al., 2009d) (Fig. 1). Once decoupling is
performed, the spectrum of the electrical field can be expressed as a
composite of rhythmic and non-rhythmic components (Figs. 1–5). A
broadband shift can then be understood as a change in the amplitude
of a non-rhythmic, stochastic, process, which reflects the dendritic inte-
gration of asynchronous inputs.

In this review, we begin by demonstrating that broadband shifts are
a ubiquitous marker of local cortical activity; we present data from four
different settings: face and house detection (inferotemporal cortex,
Fig. 2), visual search (peri-Calcarine cortex, Fig. 3), speech production
(peri-Sylvian and peri-Rolandic cortex, Fig. 4), and finger tapping
(peri-Rolandic cortex, Fig. 5). In each setting, spatially focal shifts in
broadband power are observed in a task-selective manner. We then il-
lustrate how broadband power shifts may appear to be band-limited
in certain contexts due to contamination by amplifier noise at high fre-
quencies and masking due to the general anticorrelation of alpha and
beta rhythm power at low frequencies (Fig. 6).
Methods

Human subjects

Five patients participated in the study, one patient each is reflected
in Figs. 1–5. All were patients at Harborview Hospital in Seattle, WA,
USA, with sub-dural electrocorticographic (ECoG) grids placed for ex-
tended clinical monitoring and localization of seizure foci, in the course
of the treatment for medically-refractory epilepsy. All patients partici-
pated in a purely voluntary manner, after providing informed written
consent, under a protocol approved by the Institutional Review Board
of the University of Washington.
d-white pictures of faces and houses were presented to a patient while recording from an
middle of each stimulus (q) and ISI period (notedwith arrows, 400 ms each). Times of face
ers are the middle of ISI periods. (B) 1-s epochs of raw potential. Centered at each time τq,
h of these epochs is calculated: P(f,q). (D) Each spectrum is normalizedwith respect to the
f ; qÞ. (E) The average power spectrum is shown for all face/house/ISI presentations in pink/
normalized spectra (as in D) are identified, and reveal motifs of change in the power spec-
h typically capture changes in rhythmic, peaked phenomena of power spectral change.
d and the power spectra are reconstructed, and broadband increase across all frequencies
4th PSCs only. Selective increase during house stimuli in the theta and high gamma range
fter dividing by the average across all time, then taking the log: similar to D, butwhere the
The dynamic spectrum, P f ; tð Þ, is projected into the 1st PSC, e!1 , smoothed, z-scored, and
stimuli reveals that the cortex beneath this electrode is involved in visual processing of



713K.J. Miller et al. / NeuroImage 85 (2014) 711–720



Fig. 2. Inferotemporal category-specific response. (A) A medial (“1”) and a lateral (“2”) inferotemporal electrode are shown in situ. (B) The raw power spectral density (“raw spectra”)
from site “1” in panel (A) is decomposed as illustrated in Fig. 1. (C) The broadband time series from each site. Note that the lateral electrode shows selective increase during face pictures,
and the medial electrode shows significant response during both face and house stimuli, but with larger response for house picture stimuli. Of the 300 presentations of face and house
pictures, all 300 were correctly identified from the spontaneous stream of data (with 22 false positives, (Miller et al., 2009a)). The correct face or house label could be identified with
95% accuracy, with 23 ms precision (23 ms standard deviation).
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Electrocorticographic recording

The platinum electrode arrays (Ad-Tech, Racine, WI) were config-
ured as combinations of “grid” (4 × 8, 8 × 8) and strip arrays. The elec-
trode pads had 4 mmdiameter (2.3 mmexposed), 1 cm inter-electrode
distance, and were embedded in silastic. These arrays were surgically
placed on the sub-dural brain surface during the treatment for epilepsy.
ECoG signals were split into two identical sets. One set was fed into the
clinical EEG system (XLTEK, Oakville, Ontario, Canada) and the other set
was recorded with Synamps2 (Neuroscan, El Paso, TX) biosignal ampli-
fiers at 1 kHz with an instrumental bandpass-filter from 0.3 Hz to
200 Hz. ECoG signals were acquired from the experimental amplifiers
using the general-purpose BCI2000 software (Schalk et al., 2004),
which was also used for visual stimulus presentation. Audio was
recorded using a Logitech USB desktop microphone at 11 kHz, and syn-
chronizedwith a trigger in the BCI2000 program(Fig. 4). Finger position
was recorded using a sensor data glove (5DT, Irvine, CA, Fig. 5).

Cortical rendering and electrode localization

The relationship between electrode position and gyral anatomywas
determined by first rendering the cortical surface from a pre-operative
MRI, using either the freesurfer (Dale et al., 1999) or spm5 (Ashburner
and Friston, 2005; Friston et al., 1995) environment. Then, electrode po-
sitions were calculated with respect to this pre-operative MRI from
post-operative computed tomography (CT) using the CTMR package
of Hermes et al. (2010), demonstrated to accurately localize the elec-
trode positions within an error of ~4 mm (the same as the size of the
electrodes).

Spectral analysis and decomposition (Fig. 1)

After rejection of artifactual or epileptiform electrodes, scalp-
referenced ECoGpotentialswere re-referencedwith respect to the com-
mon average reference across all remaining electrodes. From each elec-
trode, samples of power spectral density (PSD; P(f,τq)) as a function of
frequency (f) were calculated from 1 second epochs centered at the
midpoint of each “events” (different for each task), τq, where a Hann
taper was applied, the Fourier transform was implemented, and the
resulting quantity was multiplied by its complex conjugate. These sam-
ples of power spectral densitywere then decomposed using a principal-
component type approach to obtain “principal spectral components”
(PSCs), as illustrated in Fig. 1 and described in the associated caption.
Reconstruction of the PSDs from a subset of all of the PSCs differentiates
underlying motifs, and the 2nd–4th PSCs were first removed, and then
examined in isolation in Figs. 1–5.

Continuous time-frequency approximations (dynamic spectra) were
calculated using a wavelet approach, and projected onto the 1st PSC.
After smoothing (by filtering with a Gaussian window of width σ =
50 ms), z-scoring, and exponentiating, a “broadband time series”,
B(t), is obtained. There is a power law in the cortical PSD of the form
P(f,t) ~ A(t)f−χ, which is revealed by broadband fluctuations in the PSD
across all frequencies (separate from the classic θ, α, β, and γ rhythmic
motifs) (Miller et al., 2009b,d), and appears to directly correlate with
local neuronal population firing rate (Manning et al., 2009; Miller,
2010). The exponentχ is addressed in the discussion.We have proposed
that B(t) approximates multiplicative scaling in the timecourse of A(t),
and may be directly correlated with multiplicative factor in the average
neuronal firing rate of neuronal populations. This manuscript demon-
strates that B(t) is highly correlated to task-specific dynamics at very
short timescales, and is a general property across many brain areas.

Tasks

Face-house picture task (Figs. 1 and 2)
Pictures of simple, luminance and contrast matched, grayscale faces

and houses (10 cm by 10 cm at 1 m distance) were displayed in ran-
dom order for 400 ms each, with 400 ms inter-stimulus interval be-
tween. Patients were asked to report a simple target (a single upside-
down house). “Event times,” τq, were denoted at midpoint of picture
presentation or each blank screen in between stimuli. Fig. 2 results
also are quantified in Miller et al. (2009a).

Visual search task (Fig. 3)
The patient surveyed an array of colored squares (free to saccade,

without a fixation cross), on each trial stating the color of a box that
was in a particular direction adjacent to a starred box. “Event times,”

image of Fig.�2


Fig. 3. Peri-calcarine broadband response during a visual search task. (A) The ECoG potential is measured from occipital lobe brain surface sites during participation in a visual search task,
and decomposed as in Fig. 1. (B) The visual search task consists of a 4-by-5 array of colored squares. Each cue consists of a star in one of the boxes (in this case a blue box), and an arrow. The
patient states the color of the box in thedirection of the arrow from the star (“green”wouldbe the appropriate response in this case). Visual search cues are shown for 2 s,with blank inter-
stimulus-interval (ISI) cues shown for intervening 2 s. (C) As illustrated previously, power spectral changes during different portions of the experiment (top panel) may be appreciated
and naively decoupled into broadband changes (middle panel, 2nd–4th PSCs omitted) and changes in brain rhythms (bottom panel, 2nd–4th PSCs only, with prominent theta and alpha
range changes). (D) Broadband increases are observed during the various saccades required for processing of each cue. Figure modified from Miller et al. (2010a).
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τq, were denoted at midpoint of box array presentation or blank screen
in between. For a full description, see Miller et al. (2010a).
Verb generation task (Fig. 4)
Patients stated verbs that were connected to written nouns on a

screen. “Event times,” τq, were denoted at times of speech onset or silent
periods in between. For a full description of the task, see Miller et al.
(2011). The data have been analyzed differently in this manuscript
from the original.
Finger movement task (Fig. 5)
Patients performed self-paced movements of individual fingers in

response to simple visual cues. “Event times,” τq, were denoted at
times of peak finger displacements or points of rest. For a full descrip-
tion, see Miller et al. (2009d, 2012).
Results and discussion

Decoupling the cortical power spectrum to reveal broadband spectral
changes

The decoupling approach illustrated in Fig. 1 is used to identify
which spectral components covary as the PSD changes over time. The
covarying frequency components are referred to asmotifs. The strength
of the linear spectral decomposition is that it makes few assumptions
regarding the underlying structure of themotifs, except that they are or-
thogonal. Themost robust phenomenon in the PSD, seen in every motif
decomposition and across four different tasks, is a broadband increase
that is roughly even in magnitude across frequencies when plotted in
log space (Figs. 1–5). In addition, there are task-related changes in the
amplitude of low frequency rhythms (usually but not always de-
creases), with a center frequency that varies across cortical locations.

Because the low frequency rhythms do not completely decohere
during tasks, there is typically residual amplitude in the peaked portions
of the PSD during task engagement. The naive mechanism used in this
manuscript does not assume the form for the underlying spectralmotifs,
and the underlying rhythms are frequently present in the background
shape of the “broadband” decoupled.

We include an illustration and description of the decoupling tech-
nique so that the reader may gain an intuitive understanding for how
a broadband motif in spectral changes emerges naively. This method
is important from a conceptual viewpoint because it illustrates that a
‘band-independent’motif acrossmany frequencies is specific for the dy-
namics of functionally diverse neuronal populations in different brain
areas and across different tasks. From a practical viewpoint, filtering
for a “high frequency band” (HFB) may capture a majority of the vari-
ance in broadband spectral change. Although the extracted broadband
was demonstrated to vary with behavior more closely than with HFB
changes (Miller et al., 2009c; Supplemental material), the decoupling
process is more analytically burdensome. For practical purposes, isolat-
ing HFB changes is a reasonable and appropriate approximation of the
broadband change. For example, HFB power in the 76–100 Hz range ap-
proximated the broadband component of intracranial peri-Rolandic re-
cordings (Miller et al., 2009d; Supplemental Figure 15). However, we
emphasize that the specific HFB frequency range will vary depending
on sites and recording systems, and should always be selected after
inspecting the power spectrum for peaked rhythms and signal-to-
noise characteristics. In conclusion, when interpreting HFB changes, it
is essential to make the distinction between asynchronous broadband
change (reflecting a population-averaged stochastic process) and syn-
chronized rhythmic change (reflecting some coherent property of corti-
cal microcircuitry).
Linking behavior to asynchronous broadband activity across tasks and
brain regions

As shown in Figs. 1–5, broadband spectral change reflects selective
activation of local cortical circuits across many tasks and brain
areas. In Figs. 1 and 2 we see that, broadband responses within the
fusiform and parahippocampal gyri track the presentation of visual
stimuli (such as faces and houses) on a single stimulus basis with high
temporal fidelity. Furthermore, the category-specific nature of these
inferotemporal loci is sufficiently robust that the stimulus category

image of Fig.�3


Fig. 4. Language and auditory area activity during verb generation. (A) The cortical anatomy is shown,with thenon-shaded region representing the area of the exposed craniotomy, as seen
in panels B and C. Yellow lines indicate the Sylvian fissure and the central sulcus. The blue dot is an electrode site in the inferior frontal gyrus (IFG)— Broca area (Brodmann area 44). The
orange dot is an electrode site on the superior temporal gyrus (STG— Brodmann area 22). Thewhite dots are the locations of the remainder of the electrode sites. (B) The locations of the
electrodes are shown on the exposed brain surface, and the craniotomy with the grid in situ is also shown (C). (D) As illustrated previously, power spectral changes during different por-
tions of the experiment (top panel)may be appreciated and naively decoupled into broadband (BB) changes (middle panel, 2nd–4th PSCs omitted) and changes in brain rhythms (bottom
panel, 2nd–4th PSCs only). (E) BB timecourses from IFG (blue trace) and STG (orange trace). Simultaneous audio recording is also shown (black trace). (F) The lagged cross-correlation
between BB from the two ECoG channels and the envelope of the audio trace (absolute value of the Hilbert transformed signal) shows that IFG activity (blue site) precedes speech by
30 ms, while STG activity (orange site) follows speech by 180 ms. (G) Similar comparison of cross-correlation between the IFG and STG sites shows that IFG activity leads STG activity
by 280 ms. (H) The fidelity and discriminability of the time-varying BB can be estimated by examining the auto-correlations of the BB from the two sites. As would be expected, the
unsmoothed lnA autocorrelation falls off much faster. Panels A–C modified from Miller et al. (2011).
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can be classified on individual trials by simple inspection of the re-
sponse trace. Of the 300 presentations of face and house pictures for
the patient in Fig. 2, all 300were correctly identified from the spontane-
ous streamof data (with 22 false positives, Miller et al., 2009a). The cor-
rect face or house label could be identified with 95% accuracy, with
23 ms precision (23 ms standard deviation).

In peri-calcarine cortex (Fig. 3) the broadband time series reveals an
activated dynamical state during visual search, but not while resting or
staring at a blank screen. Within each cue period, there are broadband
fluctuations that presumably reflect individual saccades associated with
gaze shifts required for the individual elements of task performance —

finding the target box, making a saccade to the arrow, returning to the
target, and then identifying the appropriate color.

Broadband changes also reveal thefine temporal dynamics of speech
and language in frontal and temporal areas (Fig. 4). An intracranial re-
cording from Broca's area shows broadband activity that immediately
precedes speech during verb generation. Conversely, recording from a
superior temporal gyral auditory site shows broadband increase follow-
ing the onset of speech production. Examining the temporal cross-
correlations of broadband spectral change and the speech envelope,
we see that inferior frontal gyrus (IFG) activity precedes speech by
30 ms, while superior temporal gyral (STG) activity follows speech by
180 ms. Cross-correlation between activity from the IFG and STG
sites shows that IFG leads STG activity by 280 ms. The fact that
30 + 180 b 280 demonstrates that simplified cross-correlations cannot
take into account complex temporal dynamics, and serve only as a first
pass for interaction times between cortical areas and behavioral param-
eters. The cortical activity during speech at each of these cortical sites is
sustained for multiple seconds (panel 4E), this 70 ms discrepancy is
likely explained by more complex within-trial dynamics. The falloff of
the autocorrelation functions in Fig. 4H suggest that meaningful broad-
band signal change happens at well under 100 ms.

Finally, as seen in the hand region of dorsal pre-central cortex, adja-
cent sites are highly specific for the movements of individual fingers,
with minimal overlap, and robustly capture the dynamics of each indi-
vidual finger flexion (Figure 5, from a larger study, detailed in Miller
et al., 2012). Close examination of the timing between motor cortex ac-
tivity and movement onset is approximately 85 ms (±39 ms SD)
(Miller et al., 2009d).

These data demonstrate, across four behavioral task and multiple
cortical regions, that broadband power spectral change can be used to
track local cortical activity, withmeaningful resolution, at approximate-
ly 20–50 ms timescale. This suggests that broadband power changes in
the ECoG potential are a generic marker of activation for populations of

image of Fig.�4


Fig. 5. ECoG broadband power resolves somatotopic representation of fingers. (A) Power spectral changes, raw anddecoupled, during thumbmovement and rest. (B–D)Changes in broad-
band at different cortical sites for movement of thumb, index, and little finger, are each compared with rest. Colors denote a signed r2 measurement of increases and decreases in power
with movement relative to rest (individually scaled with maximum noted below each label). (C) Traces of thumb (dark blue), index (green), and little finger (light blue) flexion, with
corresponding timecourse of broadband spectral change (pink) for 3 pre-central cortical sites. Note that broadband timecourse from each site is remarkably specific for the flexion of
only one finger. Figure partially modified from the supplement of Miller et al. (2012).

717K.J. Miller et al. / NeuroImage 85 (2014) 711–720
cortical neurons. Future studies will be required to demonstrate that
broadband shifts are directly related to changes in population firing
rate throughout the cerebral cortex. However, in light of the conserved
geometry of superficial pyramidal neurons, this relationship is likely to
extend well beyond the occipital (Ray and Maunsell, 2011), temporal
(Manning et al., 2009), and somatomotor (Mollazadeh et al., 2009)
areas where it has been directly confirmed.

The significance of the power law form of the broadband spectral change

As demonstrated previously, the ECoG cortical power spectral densi-
ty has a power law form at high frequency, fitting tightly to P(f) ~ 1/fχ,
with χ = 4 (Miller et al., 2009b). If low frequency oscillations are
avoided, either by selecting cortical sites where they are absent, or re-
moving them using a principle component approach, a two-Lorentzian
form is revealed. A single Lorentzian form indicates the presence of sto-
chastic activity with a particular biophysical timescale (Miller et al.,
2009b) while a double Lorentzian indicates the presence of two bio-
physical timescales within the circuit that generates the cortical surface
potential. With behavior, there is a proportional increase at each fre-
quency, e.g. P(f,t) ~ A(t)P(f). This structure is important, because these
two-Lorentzian forms can emerge generically from noise-like processes
that have two simple correlation times (Sigeti and Horsthemke, 1987).
Transmitted action potentials between neurons are approximately
Poisson-distributed in time, and appear as a pure noise-like, Lorentzian,
process when averaged over many neurons (Dayan and Abbott, 2001).
Laminar recordings, measured alongside the surface potential, suggest
that the current source densities (CSD) in different cortical lamina are
due to synaptic currents and ensuing current dipoles in the dendritic
tree (Mitzdorf, 1985). In contrast, propagating action potentials in
axons and axon terminals do not contribute strongly to the CSD at spa-
tial scales of ~50–300 μm, the scale where CSD varies, setting up the di-
pole currents which the LFPs (and by extension ECoG potentials)
measure. The overall magnitude, A(t), of the measured power spectrum
results from the averaging of many input action potentials to the popu-
lation of neurons in the vicinity of a recording electrode. The shapeof the
power spectrum results from the combination of two simple known
neuronal processes (each with a characteristic correlation time and
resulting Lorentzian form), such as: temporal integration in dendrites
or soma, exponentially decaying membrane currents, low-pass RC
filtering by tissue, or local network connectivity which, when modeled,
produces precisely the measured form. The integer exponent of 2 in
each 1/f2 term indicates an underlying stochastic process, suggesting
that the ECoG signal does not resolve self-organized critical processes
(which would be associated with non-integer exponents).

A simple single-neuron model for the generation of the cortical po-
tential may provide insight into the two-Lorentzian form (Bedard
et al., 2006;Miller, 2010;Miller et al., 2009b). Two biophysical processes
determine the spectral form: one process is the exponentially decaying
post-synaptic current of fast-synapses (decay timescale 2.3 ms Sabatini
and Regehr, 1996), and the other process is the temporal integration
and leakage of polysynaptic input in the dendritic tree (leakage time-
scale 100 ms (Koch et al., 1996)). This is only one of many models
that are consistent with the measured form, but it is parsimonious and
empirically grounded. Our model suggests that broadband spectral
shifts generically reflect changes in the input firing rate to a local neuro-
nal population. It may be that inputs to more superficial lamina domi-
nate, or that pyramidal neurons have a larger contribution than
interneurons, or that, in some contexts, specific frequency ranges dom-
inate because of peculiarities of local circuitry (Buzsaki and Draguhn,
2004; Cunningham et al., 2003; Rotstein et al., 2005; Sohal et al.,
2009; Steriade, 2006; Tiesinga et al., 2008). Additionally, inter-spike
temporal correlations will be important at smaller spatial scales. How-
ever, the internal correlations between neuronal events are likely to
be lost by averaging over large spatial areas, and the spectral changes
that we measure using subdural macro-electrodes generically inform
us about the overall number of events taking place in the neuronal
population.

This hypothesis was tested explicitly by comparing spiking rate to
both band-limited and broadband power spectral changes in human
microelectrode recordings (Manning et al., 2009). The best predictor
of firing ratewas the broadband feature of the PSD. This relationwas ro-
bust, significant, and reproduced across a large number of individuals
and brain sites. Several years later, this was reproduced in non-human
primates, with similar results (Ray andMaunsell, 2011), and in a setting
where the broadband component was concretely distinguished from
the narrow-band occipital gamma rhythm.

When extracted, this broadband spectral change then likely reflects
mean firing rate, spatially averaged over the neuronal population be-
neath. If the size of the electrode is made smaller, then fewer neurons
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Fig. 6. Why “band-limited, high frequency” features may be seen in experimental data. (A) Stereotypical time–frequency plot, with task-associated power increases observed in a wide
frequency range, beginning at f = J0, extending to f = JN. Panel B shows idealized time-averaged broadband power-law spectra seen during task. (C) At high frequencies, the size of
the amplifier noise floor drowns out the power in the electric potential due to cortical activity (we denote the frequency where this becomes relevant as JN). (D) At lower frequencies,
the presence of co-existent synchronous rhythms obscures changes in the asynchronous broadband, and there is a crossover in power between the task and rest spectra (J0).
(E) When the difference between task and rest spectra shown in panel D are plotted, it becomes clear why spectrograms have band-limited, task-associated, high frequency power
changes: They are bound on the low end by J0 and the high end by JN.
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are being averaged over. The resolution of cortical representation is di-
rectly tied to the electrode size and density of spacing. By intrinsically
averaging over many stochastic synaptic inputs, broadband spectral
change reveals a robust correlate of local cortical activity on the single
trial basis, with high temporal fidelity.
Examples of genuinely rhythmic high-frequency activity

We have emphasized the ubiquity and significance of broadband
power shifts, and have suggested that (apparently) band-limited spec-
tral changes in the high-gamma range may in many cases actually re-
flect a broadband shift. However, there are also functionally critical
processes, such as hippocampal sharp wave ripples (Buzsaki et al.,
1983; Okeefe and Nadel, 1979; Ylinen et al., 1995) that have genuine
high-frequency oscillatory signatures. Other examples include the
gamma rhythm in the occipital lobe, which can be observed at frequen-
cies as high as 90 Hz (Fig. 1H) (Ray and Maunsell, 2011; Womelsdorf
et al., 2006) and which appear to be related to the intrinsic timescales
of interneuronal activity (Traub et al., 2001).

Rhythmic and non-rhythmic processes in the high-frequency range
may co-occur, if, for example, synchronization of one subpopulation
co-occurs with asynchronous firing in another subpopulation of neu-
rons. Therefore the development of tools for separating synchronous
and asynchronous processes is crucial. A separation method based on
power spectral covariance was illustrated in Fig. 1, and other tools
based on signal coarse-graining (Yamamoto and Hughson, 1993) have
also been employed. It is crucial to test the performance of these
methods in cases where the asynchronous broadband component devi-
ates from its expected form (e.g. if it does not precisely follow a power
law).

The implication of broadband power shifts will also vary as a func-
tion of the spatial geometry of the electrode. When recording with
penetrating electrodes, sharp edges in the field potential (e.g. due to in-
dividual action potentials) may introduce wide-band energy into the
spectrum. Depending on their spectral profile, these edge-induced
bursts may be difficult to distinguish from the asynchronous broadband
shifts that reflect population activity (Scheffer-Teixeira et al., 2013).
However, when recording with surface electrodes as in the examples
shown here (Figs. 1–5), the possibility of spike contamination is dra-
matically reduced, as the signal is aggregated across hundreds of
thousands of neurons, and is dominated by currents in proximal apical
dendrites (Mitzdorf, 1985).

It has been shown in a variety of behavioral settings that the ampli-
tude of this broadband spectral change is modulated by the phase of
low-frequency rhythms — a specific instance of “phase amplitude cou-
pling” (PAC) (Miller et al., 2010a, 2012). As such, this modulation likely
reflects a macroscopic index of well-known spike-field interaction
(Buzsaki and Draguhn, 2004; Mollazadeh et al., 2009; Okun et al.,
2009; Traub et al., 2001), and provides evidence that averaged spiking
activity in widespread cortical circuits, reflected by this broadband,
can be entrained with the phase of underlying rhythms.

How broadband changes have gained attention

More than 40 years ago, Brindley and Craggs observed that the
power in the 80–250 Hz frequency range of the electric potential time
series from motor cortex was dynamically and somatotopically in-
creased in adjacent motor areas during movement (Brindley and
Craggs, 1972). This finding lay obscure and dormant for more than
25 years, until Nathan Crone and colleagues independently re-
discovered that the high-frequency (~75–100 Hz) portion of the
human ECoG potential was highly specific for the dynamics of different
motor functions (Crone et al., 1998a). Although both groups proposed
that this high-frequency power was a correlate of specific cortical activ-
ity, the nature and relationship to underlying physiologywas unknown.
Crone's group hasmore clearly postulated that very local populations of
neurons were selectively synchronized with one another at multiple
fast timescales, in a spatially-overlapping tableau of microdomains,
with the spatial scale of coherence falling off with increasing frequency,
producing a 1/f shape in the PSD (Crone et al., 2011).

However, the lack of a clear upper bound in the difference between
active and inactive spectra in motor cortex led to the hypothesis (Miller
et al., 2007), and later demonstration (Miller et al., 2009b,d) that some
behavior-related changes in the cortical spectrum do not correspond to
synchronized populations of neurons, but are rather asynchronous and
broadband in nature. As illustrated in Fig. 6, these broadband spectral
changes are often mistaken for band-limited changes. The broadband
is obscured at lower frequencies by intersection with classic area-
specific oscillations such as the α and β rhythms in visual and motor
cortices (J0 in Figure 6 Miller et al., 2008). At high frequencies, the
power in the cortically generated electrical potential falls off rapidly as
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P ~ 1/f4. Because all amplifiers have an intrinsic noise floor, the brain
signal becomes lost in the instrument noise at an upper bound (JN in Fig-
ure 8Miller et al., 2009b).When researchers observing only the 1/f cor-
relate of local brain activity between J0 and JN, theymaymistakenly refer
to it as a band-limited “high-gamma power”.

Focusing on changes in particular frequency bands is practical and
computationally expedient, butwe suggest caution in interpreting spec-
tral changes (especially those above 60 Hz) as changes in cortical oscil-
lations. The oscillatory interpretation is most plausible when the high-
frequency spectral shift is large and tightly band-limited, conditions
which are rarely met in extra-cortical recordings. We propose that the
first interpretation of a high-frequency change in the spectrum should
be in terms of broadband spectral shifts. These broadband shifts,
which can be characterized using the methods described above, are
the signature of changes in asynchronous firing rate within local popu-
lation, and they are therefore both expected and observed (Figs. 1–5) in
wide-ranging experimental settings. An advantage of this approach is
that once a broadband shift is isolated, concurrent changes in the θ, α,
β, and γ rhythms can be more readily and precisely observed.

Conclusion

Having surveyed a variety of experimental settings, we reiterate the
claim that the popular “high-gamma” range of the cortical electrical po-
tential is widely misunderstood. In most cases, changes in spectral
power in this band do not reflect changes in synchronous, rhythmic, ac-
tion potentials in underlying cortex. We propose that, especially for re-
cordings outside the cortex, spectral changes in this band most often
reflect changes in asynchronous activity, which has a power-law spec-
tral signature. This power-law process, observable via broadband spec-
tral changes during behavior, likely correlates with the mean neuronal
population activity. The data indicate that this broadband spectral sig-
nature is robustly linked to function across cortical areas and behaviors,
thereby generically tracking the activation of cortical populations with
high temporal fidelity.
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