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Neural dynamics of spontaneous memory
recall and future thinking in the continuous
flow of thoughts

Haowen Su1, Xian Li 2, Savannah Born 3, Christopher J. Honey2,
Janice Chen 2 & Hongmi Lee 1

Humans constantly recall past experiences and anticipate future events, gen-
erating a continuous flow of thoughts. However, the neural mechanisms
underlying the natural transitions and trajectories of thoughts during spon-
taneousmemory recall and future thinking remain underexplored. To address
this gap, we conducted a functionalmagnetic resonance imaging study using a
think-aloudparadigm,where participants verbalize their uninterrupted stream
of thoughts during rest. We found that transitions between thoughts, parti-
cularly those involving significant shifts in semantic content, activate the
brain’s default and control networks. These neural responses to internally
generated thought boundaries produce activation patterns resembling those
triggered by external event boundaries. Moreover, interactions within and
between these networks shape the overall semantic structure of thought tra-
jectories. Specifically, stronger functional connectivity within the medial
temporal subsystem of the default network predicts greater variability in
thoughts, while stronger connectivity between the control and core default
networks is associated with reduced variability. Together, our findings high-
light how the default and control networks guide the dynamic transitions and
structure of naturally arising memory and future thinking.

The human mind is constantly engaged in recalling the past and pre-
dicting the future1,2. This creates a continuous stream of thoughts,
where semantic memory about the world and oneself, episodic
recollections of specific events, and future-oriented simulations are
intertwined with information from the current environment3,4.
Understanding the dynamics of this internally generated thought flow
can provide crucial insights into how mental representations are
organized in the brain and the neurocognitive processes involved in
accessing them. For instance, when people recall memories in a con-
tinuous stream, the order and transitions between memories follow
underlying semantic and temporal associations; related concepts or
events tend to be recalled in succession5,6. In addition, transitions
between distinct memories evoke characteristic neural responses7,

similar to the neural dynamics observed when continuous external
experiences are segmented and organized into discrete event
representations8,9. However, these findings are primarily derived from
studies involving the recall of experimentally induced experiences,
such as reading word lists or watching movies5,7, where task demands
control the flow of thoughts. What are the cognitive and neural
mechanisms underlying the naturally occurring dynamics of memory
and future thinking in real life?

Insights into the processes driving the naturalistic flowofmemory
and future thinking can be gained through the framework of sponta-
neous thought. Spontaneous thought refers to thoughts that arise and
unfold freely, without being constrained by deliberate cognitive con-
trol or attention-capturing salient stimuli10. These thoughts mostly
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consist of personally relevant retrospective and prospective
memories4,11, supported by semantic knowledge3, and often reflect the
individual’s real-life goals and current concerns12,13. In addition, spon-
taneous thoughts share neural correlates with memory recall and
future thinking1,14–16, particularly involving the default network17 and
the frontoparietal control network18. The default network, including
the hippocampus, is activated when thoughts are spontaneously
generated and maintained19,20, such as during moments of self-
reported mind-wandering21,22. The control network is also activated
and functionally coupled with the default network during these
instances21,23,24, and is thought to exert top-down control to guide the
trajectory of thoughts10,25.

Despite this extensive research on spontaneous thought, the
neurocognitive processes underlying the natural transitions and tra-
jectory of spontaneous memory and future thinking remain under-
explored. Common experimental paradigms, such as retrospective
reports26,27 and experience sampling21,22,26, ask participants to report
their thoughts after periods of rest or at intermittent intervals, limiting
their ability to track the uninterrupted flow of ongoing thoughts. To
address this limitation, recent studies have increasingly used the think-
aloud paradigm, where participants verbalize their thoughts in real
time during rest13,28–33, providing a more continuous and detailed
report of naturalistic thoughts30. These studies have shown that
thought trajectories are often clustered, with thoughts staying
semantically related until transitioning to new topics, which creates
boundaries between thoughts13,28,29. Moreover, the variability or sta-
bility of thought trajectories has been linked to distinct mental states33

and individual differences in personality and mental health29,32. How-
ever, the think-aloud paradigm has rarely been combined with neural
recording techniques30, leaving important questions unanswered
about how the brain generates and responds to these transitions and
variability in thoughts.

Here, we used the think-aloud paradigm with functional magnetic
resonance imaging (fMRI) to investigate the neural correlates of
dynamic transitions between thoughts in the flow of spontaneous
memory and future thinking. Focusing on the brain’s default and control
networks, we aimed to address the following questions: (1) What are the
major organizing principles guiding transitions from one thought to the
next? (2) What are the neural signatures of these thought transitions?
and (3) How do brain networks interact to generate variable or stable
thought trajectories? We collected think-aloud responses during 10-min
resting fMRI scans and segmented them into discrete thought units,
each containing a single topic and thought category (e.g., episodic
memory, future thinking). By analyzing transition probabilities and
semantic similarity between consecutive thoughts, we found that
semantic associations primarily guided transitions to related thoughts,
although shared neurocognitive processes (i.e., thought categories) also
played a role. Strong thought boundaries, characterized by semantic
disconnections, activated the default network and adjacent control
network areas, resulting in distributed activation patterns similar to
those observed at boundaries between external events7. Finally, inter-
actions between the default and control network regions shaped the
overall semantic structure of thought trajectories. Specifically, stronger
functional connectivity within the default network subsystem including
the hippocampus predicted greater semantic variability in thoughts,
while stronger connectivity between the default and control networks
was associated with reduced variability. Together, our findings highlight
the central role of the default and control networks in organizing the
natural transition dynamics and structure of the unconstrained stream
of spontaneous memory and future thinking.

Results
Content and distribution of thoughts
We first examined the content and distribution of various types of
thoughts reported during the think-aloud fMRI session. Participants

verbally described their stream of spontaneous thoughts for 10min
without interruption. Independent annotators manually segmented
these responses into individual thought units based on changes in
topic or category of thought (Fig. 1a; see Supplementary Table 1 for
examples of segmented thought units). The identified categories were:
current state including sensations and feelings (e.g., I feel some
breeze), semantic memory about the world or other people (e.g.,
Baltimore’s pretty cool), semantic memory about oneself (e.g., I’m a
senior now), episodic memory (e.g., I was walking around earlier with
my boyfriend), imagining or planning the future (e.g., I got to go to the
grocery store), andother thoughts not fitting into the listed categories.
Each thought unit was also assigned a topic label summarizing the
content of the thought. Figure 1d visualizes the most frequent words
used in topic labels for each thought category, aggregated across all
participants.

Participants generated an average of 54.5 thoughts (SD = 19.9,
range 19–118), producing an average of 1368.3 words (SD = 376.2,
range 368–2268) excluding filler utterances (e.g., Um, what else).
Consistent with prior studies4,34, internally oriented thoughts involving
memory and future thinking comprised the majority of spontaneous
thoughts (M = 86.8%, SD = 13.6; Fig. 1b). Among these, semantic
memory about the world/others was the most frequently reported
(M = 28.1%, SD = 12.4), followed by future thinking (M = 24.8%, SD =
19.6), semantic memory about oneself (M = 18.6%, SD = 11.0), and
episodic memory recall (M = 15.3%, SD = 11.2). On average, 11.8% of
thoughts (SD = 13.3) described current states associated with per-
forming the think-aloud task in theMRI scanner. Only 1.4% of thoughts
(SD = 4.1) could not be categorized into one of the five major cate-
gories, confirming that our thought categorization scheme effectively
captured the content of the think-aloud responses. These differences
in relative percentages across categories were statistically significant
(F(5,585) = 55.57, Greenhouse-Geisser corrected p <0.001, ηp

2 = 0.32).
The five major categories also differed in their average duration per
thought (F(4,344) = 8.05, Greenhouse-Geisser corrected p <0.001,
ηp

2 = 0.09), with semantic memory about the world/others being the
longest. Supplementary Table 2 provides descriptive statistics for each
thought category, including mean duration, word count, speech rate,
and streak length. For post-hoc paired comparisons of thought cate-
gories, see Supplementary Table 3.

The temporal distribution of thought categories over the 10-min
think-aloud session showed considerable individual variability (Fig. 1c,
upper panel). To examine the group-level temporal distribution, we
computed the proportion of participants who reported each thought
category in each 1-TR (1.5 s) time window (Fig. 1c, lower panel). The
thought categories were generally evenly distributed throughout the
session, except that participants disproportionately reported thoughts
describing the current state at the beginning of the scan. Specifically,
current states comprised 57.6% of the first thoughts reported, sug-
gesting that participants’ attention was initially captured by the salient
external environment (i.e., being in the MRI scanner) before internally
oriented thoughts emerged.

Brain activation for different thought categories
Wenext examinedbrain activation associatedwithdifferent categories
of thoughts. First, we conducted a whole-brain analysis to identify the
brain areas recruited during spontaneous memory recall and future
thinking, in contrast to processing experiences in the immediate
environment. For each cortical parcel from the Schaefer 400-parcel
atlas35, we performed paired t-tests comparing the mean activation of
each of the four internally oriented thought categories against the
current state category. The resulting group-level contrast maps are
shown in Fig. 2a, b (Bonferroni corrected, p <0.05). Consistent with
prior findings16,36, both the medial parietal cortex and the lateral par-
ietal cortex within the default network were more strongly activated
during thedescriptionof internally oriented thoughts compared to the
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current state. This default network activation was more pronounced
during episodic recall and future thinking (Fig. 2b) compared to
describing generic semantic memory (Fig. 2a), highlighting its invol-
vement in mental time travel and constructive simulation17,37,38. In
contrast, the temporo-parietal junction, which overlaps with the sal-
ience/ventral attention network, was more strongly activated during
the current state compared to the other categories. For the list of all
suprathreshold parcels from each contrast, see Supplementary
Tables 4–7.

Additionally, we examined the activation levels for different
thought categories in two subregions of the default network: the
posterior medial cortex (PMC) and the hippocampus (Fig. 2c and
Supplementary Table 8). Both regions have been frequently implicated
in memory retrieval, future thinking, and the generation of sponta-
neous thoughts16,36. Mean activation significantly varied across differ-
ent thought categories in both PMC (F(4,224) = 22.72, p <0.001,
ηp

2 = 0.29) and the hippocampus (F(4,224) = 5.28, Greenhouse-Geisser
corrected p =0.002, ηp

2 = 0.09). In PMC, all internally oriented
thought categories, except for semantic memory about oneself,
showed higher activation compared to the current state (ts > 2.02,
ps < 0.048, Cohen’s ds > 0.37). Mirroring the whole-brain analysis
results, episodic recall and future thinking showed higher activation
than semantic memory about oneself or the world (ts > 4.07, ps <
0.001, Cohen’s ds > 0.65). Among these, future thinking activated
PMC themost, with activation greater thanepisodic recall (t(70) = 3.73,
p <0.001, Cohen’s d =0.61, 95%CI = [0.04, 0.12]). In the hippocampus,
all internally oriented thought categories showed higher activation
compared to the current state (ts > 2.70, ps < 0.009, Cohen’s ds >
0.50). However, there were no significant differences between the
internally oriented thought categories themselves (ts < 1.91, ps >

0.060, Cohen’s ds < 0.32). These results remained consistent even
after controlling for behavioral measures such as duration, word
count, and speech rate for each thought unit (Supplementary Fig. 2).

Transitions between thoughts
An important characteristic of the continuous flow of thoughts is that
the mind continually moves from one thought to another3,28,39,
switching between topics and categories (Fig. 1c). What principles
underlie the dynamics of these thought transitions? Are there specific
mental states that trigger spontaneous memory recall and future
thinking? One possibility is that a thought may be evoked by another
thought sharing similar neurocognitive processes, such as when
memory retrieval is more likely to follow previous memory retrieval
than the encoding of new information40–42. In this context, a thought is
likely to be followed by another from the same category, leading to
temporally clustered thought categories. To test this idea, we
employed a Markov chain approach that has previously been used to
analyze affective transition dynamics in self-generated thoughts29,43,44.
Specifically, we computed transition probabilities across the six
thought categories including the Other category (Fig. 3a). We calcu-
lated these probabilities between individual sentences rather than
thought units to avoid bias that arises from using category transitions
to define thought unit boundaries. Consistent with our prediction, the
probability of a thought category transitioning to itself (i.e., the diag-
onal values of the transition probability matrix) was higher than
expected by chance in all thought categories except for the Other
category (ts > 12.78, ps < 0.001, Cohen’s ds > 1.23; Supplementary
Table 9).

Anotherpotentialmajor organizing factor in the chain of thoughts
is semantic relations. Models of episodic and semantic memory
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Fig. 1 | Think-aloud verbal responses. a Participants verbally described their
spontaneous flow of thoughts for 10min inside the MRI scanner. Their speeches
were transcribed and manually segmented into individual thought units, with each
thought unit containing a single topic and corresponding to one of the following
categories: current state, semantic memory about the world or other people,
semantic memory about oneself, episodic memory, imagining or planning the
future, and other uncategorized thoughts. b Percentages of different thought
categories among all thought units within each participant. Each colored dot
represents an individual participant (N = 118 for all categories). Black circles indi-
cate the mean across participants within each category. Error bars show the SEM
across participants. c Temporal distribution of different thought categories within

the 10-min think-aloud session. The upper panel shows the distribution of thought
categories for five example participants. The lower panel shows the percentages of
different thought categories averaged across participants for each time point (1
TR= 1.5-s window). Different colors denote different categories (current state =
pink; semantic-world = green; semantic-self = light green; future-oriented = light
blue; other = dark gray; fillers/pauses = light gray). d Word clouds showing com-
mon topics for each major thought category. Topic labels were generated by the
annotators who segmented the think-aloud responses. Up to the 50most frequent
words used in topic labels, combined across all participants, are visualized using
the WordCloud Python package (version 1.9.3). More frequent words are shown in
larger fonts.
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search5,45,46 and spontaneous thought13,39 suggest that sharedmeanings
can cue semantically associated thoughts. To test this, we measured
semantic similarity between thought units using a natural language
processing technique28,31,33, defining it as the cosine similarity between
text embedding vectors representing each thought (Fig. 3b). Sup-
porting the semantic association hypothesis, we found that a thought
was semantically more similar to its immediate consecutive thoughts
(lags −1 and 1) than to more temporally distant thoughts (lags −15 and
15) across all thought categories (ts > 9.98, ps < 0.001, Cohen’s ds >
1.22; Fig. 3c and Supplementary Table 10). The semantic association
between consecutive thoughts was particularly stronger for internally
oriented thought categories including memory and future thinking,
compared to the current state category (ts > 4.41, ps < 0.001, Cohen’s
ds > 0.57; Supplementary Table 11).

If both shared neurocognitive states (i.e., thought categories) and
semantic associations affect transitions between thoughts, which fac-
tor has a greater impact? To address this question, we compared
thought boundaries involving category changes with those involving
topic changes (Fig. 1a and Supplementary Table 1) in terms of their
perceived disconnectedness. If semantic associations play a more
significant role in the flow of thoughts, then changes in topics (e.g.,
shifting from episodic recall about a term paper to episodic recall
about a dog) will be perceived as stronger boundaries than changes in
general thought categories (e.g., shifting from episodic recall about a
dog to semantic memory about the dog), and vice versa. To inde-
pendently measure the perceived strength of boundaries between
thoughts, we had a separate group of human coders read the think-
aloud transcripts and identify moments when one thought transi-
tioned to another (Fig. 3d). Critically, they were instructed to use their
best subjective judgment based on any criteria and were not specifi-
cally told to consider changes in thought categories or topics. The
measure of boundary strength was boundary agreement scores,
computed as the proportion of coders who identified eachmoment as

a thought boundary. The scores ranged from 0 (no coders identified a
boundary) to 1 (all coders detected a boundary). Supplementary Fig. 3
presents the full distribution of boundary agreement scores.

The results suggested that semantic associationsmay play amore
crucial role than thought categories in defining thought boundaries.
On average, each participant’s responses included 21.4 boundaries
with category changes alone (SD = 12.2), 13.7 with topic changes alone
(SD = 8.5), and 18.4 with both changes (SD = 9.7). Importantly, bound-
ary agreement scores varied across these different types of thought
boundaries (Fig. 3e; F(2,230) = 501.48, p <0.001, ηp

2 = 0.81), with
higher agreement observed at boundaries involving both topic and
category changes (t(115) = 28.67, p <0.001, Cohen’s d = 3.00, 95% CI =
[0.39, 0.45]), or topic changes alone (t(116) = 24.06, p <0.001, Cohen’s
d = 2.27, 95% CI = [0.32, 0.38]), compared to those involving only
category changes. This pattern wasmirrored in the semantic similarity
between pre- and post-boundary thoughts: semantic similarity was
lower at boundaries involving both topic and category changes
(t(115) = 15.29, p < 0.001, Cohen’s d = 1.74, 95% CI = [0.09, 0.12]) and
topic changes alone (t(116) = 5.57, p <0.001, Cohen’s d = 0.61, 95%
CI = [0.03, 0.05]), compared to those involving only category changes
(Fig. 3f). Furthermore, boundary agreement was negatively correlated
with semantic similarity between consecutive thoughts within each
participant (mean Spearman’s ρ = −0.33, SD =0.16; one-sample t-test
against zero: t(116) = −21.62, p <0.001, Cohen’s d = 2.00, 95% CI =
[−0.36, −0.30]), confirming that changes in semantic content critically
influenced thought boundary perception.

Neural responses at major thought transitions
Although internally oriented thoughts generally transition to seman-
tically related ones, shifts to unrelated topics occasionally occur,
creating salient boundaries28,47. What are the neural signatures of these
prominent boundaries between thoughts? While neural responses at
event boundaries driven by changes in external stimuli have been
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the lateral (left) and medial (right) surfaces of the left hemisphere of the inflated
fsaverage6 template brain. Parcels with significantly higher activation compared to
the current state are shown in red, while those with significantly lower activation
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was Bonferroni corrected across the 400 parcels in the Schaefer atlas35. Supple-
mentary Tables 4–7 provide the lists of suprathreshold parcels from both

hemispheres. Similar activation maps for memory and future thinking were
obtained after excluding thought boundary periods from the analysis (Supple-
mentary Fig. 1; see “Neural responses at major thought transitions” in “Results”).
c Mean blood oxygenation level-dependent (BOLD) signal for each thought cate-
gory in the posterior medial cortex (PMC; top) and the hippocampus (bottom).
Each colored dot represents an individual participant (N = 62, 75, 72, 73, and 72 for
current, semantic-world, semantic-self, episodic, and future categories, respec-
tively). Black circles indicate the mean across participants within each category.
Error bars show the SEM across participants. Statistical significance indicates dif-
ferences between thought categories based on two-tailed paired t-tests. Full sta-
tistics for individual comparisons, including exact p values, are reported in
Supplementary Table 8. **p <0.01, ***p <0.001 (uncorrected).
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studied extensively48–50, internally-driven boundaries between mental
contexts have rarely been investigated7,51. To characterize the neural
responses at boundaries between thoughts,we focusedour analysis on
the strongest boundaries, defined by a boundary agreement score of 1
(pre- and post-boundary thought semantic similarity: M =0.19, SD =
0.08). These boundaries most commonly involved both thought
category and topic changes (M = 64.5%, SD = 22.9), followed by topic
change only (M = 30.4%, SD = 21.6) and category change only (M = 5.1%,
SD = 9.8). Notably, 81.2% of these strong boundaries involved transi-
tions to one of the four memory/future thinking categories. Supple-
mentary Table 12 provides a breakdown of the percentages for specific
thought category pairs that preceded and followed the strong thought
boundaries.

We began by identifying the brain areas activated at strong
thought boundaries. We performed a whole-brain univariate analysis,
contrasting the average activation during boundary periods with that
during non-boundary periods (Fig. 4a). A boundary periodwas defined
as a 6-s window following the offset of a pre-boundary thought. A non-
boundary period was defined as a 6-s window in the middle of a
thought lasting longer than 15 s. Greater activation during boundary
periods, compared to non-boundary periods, was observed primarily
in the medial frontal and parietal areas of the default network and

control network. In contrast, greater activation during non-boundary
periods was observed in the lateral frontal areas associated with
speech generation and areas around the auditory cortex, reflecting the
effect of a temporary pause in speech at thought boundaries. For the
list of all suprathreshold parcels, see Supplementary Table 13.

We further examined the activation time course in the PMC and
hippocampus ROIs for different types of thought boundaries (Fig. 4b).
PMC showed significant activation from 4.5 to 10.5 s following strong
thought boundaries, compared to the non-boundary time course
aligned to the middle of thoughts (ts > 4.21, ps < 0.001, Cohen’s ds >
0.66; Supplementary Table 14). The boundary responses in PMCwere
also scaled with the strength of thought boundaries. Boundaries
involving only topic changes (boundary agreement M = 0.60, SD =
0.18) evoked weaker responses compared to the strong boundaries
with agreement scores of 1. Boundaries involving only thought cate-
gory changes (boundary agreement M = 0.25, SD =0.13) resulted in
even weaker responses. The hippocampus showed a slightly higher
response at 4.5 s following strong boundaries compared to non-
boundaries, which did not reach statistical significance (t(74) = 1.97,
p =0.052, Cohen’s d = 0.37, 95% CI = [−0.00, 0.08]).

Next, we analyzed the distributed activation patterns at strong
thought boundaries. In a prior study7, we identified a distinctive

1                2                2                  3 

1                1                2                  3 

1                2                2                  3

1                2                3                  4 

1                1                1                  2

0.6              0.4              1 

a

c

B
ou

nd
ar

y 
ag

re
em

en
t

b

0

Lag

S
em

an
tic

 s
im

ila
rit

y

Lag Lag Lag Lag

0.5

1

Category
change

Topic
change

Current Semantic-world Semantic-self Episodic Future-oriented

Both
change

0.1

0.2

0.3

-15 0 15-15 0 15-15 0 15 -15 0 15 -15 0 15

Category
change

Topic
change

Both
change

0

0.2

0.4

0.6

S
em

an
tic

 s
im

ila
rit

y

***d e f
*** ***

***

-20

20

t s
ta

tis
tic

Curre
nt

Semantic
-w

orld

Semantic
-se

lf

Episo
dic

Future
Other

Next category

C
u

rr
en

t 
ca

te
g

o
ry

Curre
nt

Semantic
-w

orld

Semantic
-se

lf

Episo
dic

Future

Other

A

B

C

D

Thought units

Text embeddings

I finished my paper Dogs are the best I want to pet my dog

0.4 0.1 0.5 0.2 0.8 0.7 0.2 0.2 0.7 0.3 0.2 0.5 0.1 0.4 0.2 0.7 0.1 0.3 0.5 0.1 0.2

cos cos

E

Sentence 1. Sentence 2. Sentence 3. Sentence 4.

C
o

d
er

s

I I   
I   

I 
I   I   I 

I   
I   

I   

Agreement

Fig. 3 | Transitions between thoughts. a Sentence-level transition probability
between different thought categories. The rows and columns of the matrix repre-
sent the current and next categories, respectively. The numbers in the matrix
indicate transition probabilities for each category pair, averaged across partici-
pants. The colormapof thematrix indicates the t-statistics from two-tailed paired t-
tests against the chanceprobability (i.e., the overall proportion of the next category
among all sentences within each participant). Transitions that occur more fre-
quently than chance are shown in red, while those that occur less frequently than
chance are shown in blue. Full statistics for individual cells, including exactp values,
are reported in Supplementary Table 9. *p <0.05 (Bonferroni corrected). b Mea-
suring semantic similarity between thought units. Each thought unit was converted
to a text embedding vector using the Sentence Transformers Python module
(version 2.2.0). Semantic similarity between thoughts was defined as the cosine
similarity between their embedding vectors. c Semantic similarity as a function of
the temporal distance froma target thought unit in each thought category. Lags are
measured in units of thought, with lag = 0 representing the target thought. Nega-
tive and positive lags indicate thoughts that occurred before and after the target

thought, respectively. Solid lines indicate themean across participants (N = 98, 117,
113, 113, and 112 for current, semantic-world, semantic-self, episodic, and future
categories, respectively). Shaded areas indicate the SEM across participants.
d Measuring thought boundary agreement scores from think-aloud transcripts.
Independent coders assigned the same numbers to consecutive sentences/clauses
describing a single thought. Thought boundaries (redbars)weredetectedwhen the
thought identification numbers changed. Boundary agreement scoresweredefined
as the proportion of coders who identified each moment as a thought boundary.
e Mean boundary agreement scores for different types of thought transitions.
fMean semantic similarity between pre- and post-boundary thoughts for different
types of thought transitions. In both e and f, each colored dot represents an indi-
vidual participant (N = 117, 118, and 117 for category change, topic change, and both
change conditions, respectively). Black circles indicate the mean across partici-
pants within each transition type. Error bars show the SEM across participants.
Statistical significance reflects differences between thought transition types, as
determined by two-tailed paired t-tests. ***p <0.001 (uncorrected).

Article https://doi.org/10.1038/s41467-025-61807-w

Nature Communications |         (2025) 16:6433 5

www.nature.com/naturecommunications


activation pattern associated with major mental context transitions
within the default network and the adjacent control network, parti-
cularly around PMC. Specifically, we observed similar activation pat-
terns at boundaries between different movies while participants
watched a series of films. These patterns also reappeared at bound-
aries betweenmemories of themovies during continuous verbal recall.
We predicted that this major mental context transition pattern would
generalize to strong thought boundaries during think-aloud sessions.

To test this, we conducted a whole-brain pattern similarity ana-
lysis (Fig. 4c). For each cortical parcel, we correlated the mean acti-
vation pattern at strong thought boundaries during think-aloud
sessions with the mean activation pattern at between-movie

boundaries from themoviewatchingphaseof our prior study7.We also
correlated the mean non-boundary activation pattern during think-
aloud with the same between-movie boundary pattern. As predicted,
the major mental context transition pattern was observed in parcels
within and around PMC. Figure 4d illustrates these parcels, where (1)
strong thought boundary patterns were positively correlated with
between-movie boundary patterns, and (2) this correlationwas greater
than the correlation between non-boundary patterns and between-
movie boundary patterns. Supplementary Fig. 4 shows separatewhole-
brain maps of positive pattern similarities between thought bound-
aries and movie boundaries (Supplementary Fig. 4a) and significant
differences between strong thought boundaries and non-boundaries
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Fig. 4 | Neural responses at thought boundaries. aWhole-brain t-statistic map of
the univariate contrast between strong boundary (boundary agreement = 1) and
non-boundary periods. Parcels with significantly higher activation during strong
boundary periods compared to non-boundary periods are shown in red, while
those with significantly lower activation are shown in blue. Statistical significance
(two-tailed p <0.05) was Bonferroni corrected across all parcels. White outlines
indicate the auditory cortex and the posterior medial cortex (PMC), respectively.
b Mean PMC (left) and hippocampus (right) activation time courses aligned at
different types of thought boundaries, with different colors indicating the
boundary types (strong boundary = red; topic change = orange; category
change = yellow; non-boundary = gray). Time zero for the non-boundary condition
represents themiddle of thoughts longer than 15 s. For other conditions, time zero
represents the offset of the pre-boundary thought. Solid lines indicate the mean
across participants (N = 75 for all conditions). Shaded areas indicate the SEM across
participants. Asterisks above the x-axis indicate time points where activation for
strong boundaries is significantly higher than non-boundaries, as determined by
two-tailed paired t-tests with Bonferroni correction (p <0.05). Full statistics for
individual time points, including exact p values, are reported in Supplementary
Table 14. c Boundary pattern similarity analysis. For each region, we computed the

mean activation pattern of between-movie boundaries from the movie-watching
phase of our prior study7. This template pattern was correlated with the mean
activation patterns of strong thought boundaries (red bars) and non-boundary
periods (gray bars) during think-aloud. d Whole-brain t-statistic map of boundary-
specific pattern similarity. Parcels are shown in red if their between-movie
boundary patterns were more similar to their strong thought boundary patterns
than to the non-boundary patterns. The map is masked to only include areas that
showed positive correlations between the between-movie boundary patterns and
the strong thought boundary patterns. Statistical significance (two-tailed p <0.05)
was Bonferroni corrected across all parcels. e Boundary pattern similarity in PMC.
The think-aloud strong thought boundary and non-boundary patterns were cor-
related with themean activation patterns of between-movie boundary periods (left
panel) or silent periods (right panel) from themovie watching phase7. Each colored
dot represents an individual participant (N = 75 for all conditions). Black circles
indicate themean across participants. Error bars show the SEM across participants.
Statistical significance relative to zero was assessed using two-tailed one-sample t-
tests, while differences between conditions were evaluated using two-tailed paired
t-tests.
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(Supplementary Fig. 4b). Similar results were observedwithin the PMC
ROI (Fig. 4e, left panel), showing a positive correlation between the
strong thought boundary pattern and the between-movie boundary
pattern (t(74) = 2.22, p = 0.029, Cohen’s d =0.26, 95% CI = [0.01, 0.11]).
This correlationwas also greater than the correlation between the non-
boundary pattern and the between-movie boundary pattern
(t(74) = 2.29, p = 0.025, Cohen’s d =0.41, 95% CI = [0.01, 0.17]).

Is this thought transition pattern simply driven by pauses in
speech at boundaries? Strong thought boundaries in the current study
and between-movie boundaries in ref. 7 share low-level auditory fea-
tures, as both involve brief periods of silence. Indeed, parcels around
the auditory cortex also showed a positive correlation between strong
thought boundary patterns and between-movie boundary patterns
(Fig. 4d). To rule out this possibility, we compared the activation
patterns at strong thought boundaries with those during periods of
silence in the auditory cortex and PMC ROIs. The silence pattern was
derived from the movie-watching phase of ref. 7 by averaging silent
moments within the movie stimuli. In the auditory cortex (Supple-
mentary Fig. 5), the silence pattern was positively correlated with the
strong thought boundary pattern (t(74) = 4.85, p < 0.001, Cohen’s
d =0.56, 95% CI = [0.07, 0.18]) but negatively correlated with the non-
boundary pattern (t(74) = −3.17, p =0.002, Cohen’s d =0.37, 95% CI =
[−0.10, −0.02]), confirming that its thought boundary pattern was
driven by the absence of sound. In contrast, in PMC (Fig. 4e, right
panel), the silence pattern was not correlated with the strong thought
boundary pattern (t(74) = 0.73, p =0.465, Cohen’s d =0.08, 95% CI =
[−0.03, 0.07]), but was positively correlated with the non-boundary
pattern (t(74) = 2.37, p =0.021, Cohen’s d =0.27, 95% CI = [0.01, 0.10]).
Thus, the internally-driven boundary pattern in PMC is unlikely to be
driven by pauses in speech.

Shifts in neural representations of thoughts across boundaries
In addition to transient boundary responses, previous studies on
stimulus-driven event boundaries have demonstrated shifts in neural
representations of extended events across those boundaries, espe-
cially in higher-order cortices52,53. Do similar shifts occur across
thought boundaries during think-aloud? To explore this question, we
first examined whether the strong thought boundaries identified by
human coders aligned with changes in neural activation patterns
detected through a data-driven approach. Specifically, we applied a
modified hidden Markov model (HMM) previously used to identify
event boundaries in neuroimaging data collected during naturalistic
movie viewing and recall53,54. The HMM segments continuous brain
activity into a predefined number of discrete events, based on the
assumption that activation patterns remain stable within each event
and shift at event boundaries53.

We conducted a whole-brain HMM analysis, segmenting the
activation time series of each cortical parcel into the same number of
segments as the human-identified strong thought boundaries for each
participant. Consistent with findings from movie event boundaries53,
the strongest alignment between the human-identified strong thought
boundaries and HMM-derived boundaries was observed in parcels
within or near the default network, including PMC (Fig. 5a and Sup-
plementary Table 15). Further analysis focusing on PMC also showed
significant overlap between the strong thought boundaries and HMM-
derived boundaries (% overlap M = 11.8, SD = 12.8, one-tailed rando-
mization p <0.001; Fig. 5b, c), suggesting that these strong boundaries
corresponded with shifts in neural representations in the region.

We next examined whether changes in neural representations of
thoughts across boundaries scaled with perceived boundary strength.
We computed PMC pattern similarity between all consecutive thought
pairs and correlated these similarity values with boundary agreement
scores. Tominimize the influence of stereotyped activation patterns at
thought boundaries, we excluded 6-second windows following the
offset of each thought from the analysis. PMC pattern similarity
between consecutive thoughts was negatively correlated with
boundary agreement scores (mean Spearman’s ρ = −0.19, SD =0.26;
t(74) = −6.37, p <0.001, Cohen’s d = 0.74, 95% CI = [−0.25, 0.13]), indi-
cating that greater perceived boundary strength was associated with
more pronounced neural shifts in PMC. In both the pattern similarity
and HMM analyses, shifts in PMC neural representations were greatest
at boundaries involving changes in both thought category and topic,
followed by topic-only and category-only changes (see Supplementary
Methods).

Thought structure and brain connectivity
So far, we have focused on transitions between immediately neigh-
boring thoughts. However, the dynamics of thought can also be
reflected in the overall semantic structure, including the relationships
between temporally distant thoughts, such as the recurrence of similar
topics over time. Indeed, individuals’ thought streams vary in how
divergent or focused their content is10,33. What are the neural under-
pinnings of this variability or stability in thoughts? A prominent per-
spective on spontaneous thought hypothesizes that various large-scale
brain networks play distinct roles in shaping the structure of internally
oriented thoughts10. The medial temporal lobe subsystem of the
default network may be responsible for generating variable thoughts,
while the core default network subsystem likely constrains thoughts
toward personally significant information55. The frontoparietal control
network (FPCN)may interact with other networks to help sustain goal-
relevant thoughts, thereby increasing thought stability33.

To test this idea, we explored the relationship between functional
connectivity within and between large-scale brain networks and the
overall semantic structure of think-aloud responses. The semantic
structure was quantified using the average clustering coefficient of the
semantic network of thoughts, where nodes represented individual
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thought units and edges represented the semantic similarity between
these thoughts (Fig. 6a). Higher clustering coefficients indicated more
stable and focused thought structures, while lower clustering coeffi-
cients indicated more variable and divergent thought structures
(Fig. 6b). Figure 6c shows the distribution of average clustering coef-
ficients across all participants (M =0.18, SD =0.05). For the functional
connectivity analysis, we focused on Control Network B, Default Net-
work A, and Default Network C as defined in the 17-network version of
the Schaefer atlas35, with the hippocampus included in Default Net-
work C (Fig. 6d). These networks correspond, respectively, to a sub-
system of the FPCN coupled with the default network56, the core
default network subsystem, and the medial temporal lobe subsystem
of the default network, as outlined in ref. 10.

As expected, interaction between the control and default net-
works was associated with semantic stability in think-aloud responses.
Specifically, functional connectivity between Control Network B and
Default Network A was positively correlated with thought network
clustering coefficients across participants (r(73) = 0.24, p =0.041, 95%
CI = [0.01, 0.44]; Fig. 6e). Functional connectivity between Control

Network B and Default Network C was also numerically positively
correlated with clustering coefficients, although this relationship did
not reach statistical significance (r(73) = 0.13, p =0.256, 95% CI =
[−0.10, 0.35]). In contrast, within-network functional connectivity
computed across the subregions of Default Network C was negatively
correlated with thought network clustering coefficients (r(73) = −0.29,
p =0.013, 95% CI = [−0.48, −0.06]; Fig. 6f), supporting its role in gen-
erating thought variability10. There was no significant correlation
between clustering coefficients and the connectivity between Default
Network A and Default Network C (r(73) = −0.04, p = 0.729, 95% CI =
[−0.27, 0.19]).

Additionally, we performed a post-hoc exploratory analysis to
identify specific pairs of subregions whose functional connectivity
correlates with the overall semantic structure of thoughts (Fig. 6g,
lower triangle; Supplementary Table 16). We found that connectivity
between PMC in Default Network A and the lateral dorsal prefrontal,
lateral ventral prefrontal, and medial posterior prefrontal cortex sub-
regions in Control Network B was positively correlated with thought
network clustering coefficients (r(73)s > 0.23, ps < 0.041). Connectivity
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clustering coefficients of thought networks and the between-network functional
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Article https://doi.org/10.1038/s41467-025-61807-w

Nature Communications |         (2025) 16:6433 8

www.nature.com/naturecommunications


between the temporal lobe subregion of Control Network B and the
retrosplenial cortex inDefault NetworkCwasalsopositively correlated
with clustering coefficients (r(73) = 0.25, p =0.029, 95% CI = [0.03,
0.45]). In contrast, within Default Network C, connectivity between the
parahippocampal cortex (PHC) and the hippocampus, retrosplenial
cortex, and inferior parietal lobule subregions was negatively corre-
lated with thought network clustering coefficients (r(73)s < −0.23,
ps < 0.044). The strongest of these correlations was between PHC-
hippocampus connectivity and clustering coefficients (r(73) = −0.42,
p <0.001, 95% CI = [−0.59, −0.21]), which survived Bonferroni’s cor-
rection for multiple comparisons.

Could the correlations between functional connectivity and
thought network clustering be driven by boundary-related neural
activation? Lower clustering may reflect more frequent or stronger
thought boundaries,which could, in turn, increase connectivity among
subregions responsive to such boundaries. However, connectivity
between Control Network B and Default Network A was positively,
rather than negatively, correlated with clustering coefficients (Fig. 6e).
Moreover, within Default NetworkC, clustering coefficients weremost
negatively correlatedwith connectivity between the hippocampus and
PHC, regions that did not show significant boundary responses, rather
than with connectivity involving the retrosplenial cortex, which did
(Supplementary Table 13). Thus, boundary-related activation is unli-
kely to mediate the observed relationships between functional con-
nectivity and thought variability. Functional connectivity and thought
variability were also not notably related to the proportions of specific
thought categories (see Supplementary Methods).

Discussion
The current study investigated the neural mechanisms underlying the
dynamic flow of spontaneous memory recall and future thinking.
Using a think-aloud paradigm, where participants continuously ver-
balized their thoughts during resting fMRI scans, we captured neural
responses specifically linked to natural transitions between thoughts
and the semantic structure of thought trajectories. Within the flow of
thought, primarily consisting of retrospective and prospective mem-
ories, transitions predominantly occurred between semantically
associated thoughts. Notably, significant shifts in the semantic content
of thoughts created boundaries between them, activating core
posterior-medial areas of the default and control networks. These
boundary responses generated distributed activation patterns com-
parable to those evoked by boundaries between external events. Fur-
thermore, functional connectivity within and between the default and
control networks predicted the overall semantic variability and stabi-
lity of thought trajectories, highlighting the crucial role of these large-
scale networks in shaping the dynamics of spontaneous memory and
future thinking.

The think-aloud paradigm enabled us to identify brain regions
involved in naturally arisingmemory and future thinking. Compared to
thoughts focused on current feelings and sensations, these internally
oriented thoughts—particularly episodic recall and future imagination
—activated the default network including the hippocampus, medial
frontal cortex, lateral parietal cortex, and PMC. This activation was not
systematically influenced by behavioral features such as thought
duration, word count, or speech rate (Supplementary Table 2 and
Supplementary Fig. 2), suggesting that it reflects deeper cognitive
processes rather than superficial features of speech or thought pro-
duction. Prior studies usingmore controlled tasks have also implicated
a similar set of regions in episodic memory retrieval15,16, mental
simulation1, and self-referential thinking19,43, further supporting their
role in constructing internal narratives57. In addition to the default
network, spontaneous thought generation is known to engage broader
neural systems, including regions involved in cognitive control21,23,24.
However, we did not observe notable activation in the control network
when compared to the current state category. While the current state

category primarily captured thoughts about the immediate environ-
ment, the process of consciously accessing and verbalizing them
within a continuous stream may demand a similar level of cognitive
control as memory and future thinking. This overlap could have
diminished the contrast between current state and internally oriented
thought categories. Additionally, functional networks beyond the
default network show greater inter-individual variability in activation
during mind wandering58, which may have further contributed to the
non-significant result.

We found that both shared neurocognitive processes and
semantic connections guide the transitions of spontaneous thoughts.
Specifically, (1) thoughts tend to transition within the same thought
category, and (2) consecutive thoughts show higher semantic simi-
larity than temporally distant ones. This reflects a tendency for
thoughts to remain stable for a period before switching to a new one,
consistent with prior research describing the locally clustered struc-
ture of thought trajectories3,28,59. Additionally, topic transitions elicited
stronger boundary perceptions and greater cortical activation than
thought category transitions, suggesting that semantic connections
play amore dominant role in driving spontaneous thought transitions.
This finding reinforces the longstanding view that semantic associa-
tions provide an organizing framework for internal representations
and can serve as retrieval cues3,5,39,46. That said, it is worth noting that
thought category and semantic contentmay not be entirely separable.
For example, in our study, the current state category predominantly
involved semantic content related to the MRI scanning environment
(Fig. 1d). A previous study27 has also reported correlations between
temporal dimensions (e.g., past, future) and content-related dimen-
sions (e.g., people, images) in spontaneous thought. Moreover,
boundaries involving changes inboth thought category and topicwere
associated with greater semantic shifts than those involving topic
changes alone (Fig. 3f), highlighting the influence of thought cate-
gories on semantic content. Future research could further investigate
how different thought categories and semantic content interact to
shape the dynamics and effects of thought transitions.

At strong thought boundaries marked by prominent shifts in
thought content, midline default and control network regions are
recruited, generating distributed activation patterns similar to those
observed at externally-driven event boundaries. Neural responses to
stimulus-driven boundaries between external events have been
extensively studied in the fields of perception and memory, as they
reveal how the brain segments and encodes continuous experiences
into discrete events8,49,50. However, responses to boundaries created
by internalmental context transitions remain largely unexplored51,60. In
a rare prior study7, we demonstrated that boundaries between mem-
ories of different movies during continuous narrated recall elicit ste-
reotyped activation patterns in PMC and nearby areas, similar to those
seen at stimulus-driven movie boundaries during the initial viewing.
The current study replicates and expands on these findings, applying
them to boundaries between spontaneous internal narratives, which
encompass broader semantic topics and exhibit more unconstrained
dynamics. Our findings suggest that the boundary responses in the
posterior medial areas represent a generalized signal of mental con-
text transitions. This signal likely reflects internal task-switching
demands61,62, which arise at the end of a thought to resolve competi-
tion among upcoming thoughts, allowing one to dominate conscious
attention. Supporting this idea, the regions with heightened activation
at thought boundaries overlapped with posterior-medial areas of the
control network (Fig. 4a and Supplementary Table 13). These areas are
known to play a key role in top-down cognitive control during task set
changes63,64. However, this interpretation relies on reverse inference65,
and further research is needed to fully understand the nature of cor-
tical boundary responses in spontaneous thought.

Despite robust cortical responses, we did not observe significant
hippocampal activation at major thought boundaries. This was
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unexpected given the hippocampus’s well-established role in sponta-
neous thought generation10,47,66 and mental time travel36. Moreover,
the hippocampus is consistently activated at externally-driven
boundaries between naturalistic events, supporting the successful
encoding of these events49,53,67. Why, then, does the hippocampus not
respond to thought boundaries? One possible explanation is the
continuous demand for memory retrieval and thought generation
inherent in the think-aloud task. This may lead to sustained hippo-
campal activation throughout most of the session, masking any
responses to thought boundaries, if they exist. Indeed, the hippo-
campus showed consistently higher activation for memory and future
thinking categories, which comprised the majority of thoughts, com-
pared to the current state category where participants simply descri-
bed their immediate experiences (Fig. 2c and Supplementary Fig. 2). In
contrast, during tasks that primarily involve encoding new external
events, such as watching movies, the hippocampus may respond
specifically to event boundaries by transiently retrieving the just-
concluded event54. Thus, hippocampal responses differ between
externally and internally driven mental context boundaries, despite
similar cortical activation patterns.

Beyond transient boundary responses, major thought boundaries
were also reflected in shifts in neural patterns associated with pre- and
post-boundary thoughts in higher-order cortices, including the default
and control networks. Similar pattern shifts have been observed at
stimulus-driven event boundaries52,53. Importantly, these shifts should
be distinguished from the boundary-specific pattern discussed above;
rather than reflecting transient responses, they involve changes in the
average neural patterns of thoughts or events that remain stable over
relatively long timescales. These stable patterns in higher-order cor-
tices, particularly in the default network, are thought to represent
abstract internal models of the ongoing situation53,68. Our results
suggest that such representations may function similarly regardless of
whether the information used to build the models is primarily intern-
ally generated or externally provided. This supports a recent per-
spective emphasizing the default network’s role in integrating both
internal and external sources of information38.

Our findings demonstrate the role of functional connectivity
within and between large-scale brain networks in shaping the semantic
structure of spontaneous thought trajectories. This connectivity pro-
vides a potential neural basis for individual differences in thought
dynamics, ranging from fleeting and freely flowing to more controlled
and sustained patterns69. Consistent with the dynamic framework of
spontaneous thoughts10, stronger interactions within the medial tem-
poral lobe subsystem of the default network (DNMTL) were linked to
greater thought variability, positioning it as a source of variability
through associative cueing and pattern completion39. In contrast,
increased coupling between the control network and the core sub-
system of the default network (DNcore) was associated with thought
stability, confirming the role of the control network in constraining
thoughts toward goal-relevant content55. These findings also alignwith
creativity research, which suggests that the default network facilitates
divergent idea generation, while the control network monitors and
evaluates these ideas for goal-relevance70. However, connectivity
between DNMTL and DNcore did not correlate with thought structure,
despite the DNcore’s proposed role in automatically constraining
thoughts toward salient internal information10. This may be because
automatic constraints can either increase or decrease thought varia-
bility depending on its nature55. For example, automatic constraints
may reduce variability during rumination, when individuals fixate on
negative thoughts or emotions. Conversely, they may increase varia-
bility by triggering shifts to salient but irrelevant thoughts when
attempting to focus on goal-relevant topics.

What are the specific functions of key subregions within these
networks that underlie the observed relationships with variable or
stable thought structure? Within the DNMTL, the hippocampus

represents event memory traces consisting of associations between
various contextual details, such as what, where, and when71. When a
fragment of these details is activated by external input or internal
thought, related details are also activated, potentially leading to a cas-
cade of memory retrieval and generating a variable flow of thoughts39.
This activation of hippocampal memory details can also reinstate their
lower-level representations encoded in upstreammedial temporal lobe
cortices—for example, the spatial layoutof aplace represented inPHC72.
Thus, greater coupling between the hippocampus and MTL cortices
may reflect the reconstruction of diverse, richly detailed memories. In
the DNcore, PMC supports the formation and maintenance of abstract
internal situationmodels by integrating external stimuli withmemories
retrieved by the DNMTL

38, as discussed above. Similarly, the medial
prefrontal cortex represents abstract schematic knowledge, especially
knowledge related to the self73. Together, these regions are thought to
support the projection of the self into a mentally constructed
situation74, a process commonly observed during mind-wandering and
spontaneous thought. Subregions of the FPCN, particularly the lateral
dorsal and lateral ventral (rostrolateral) prefrontal cortices (PFC), likely
regulate this process through executive control, sustaining goal-
relevant projections while suppressing irrelevant ones55. Both regions
are implicated in maintaining and implementing task goals and rules,
with the lateral dorsal PFC supporting more specific and direct rule
implementation than the lateral ventral PFC10.

Although the think-aloudparadigmhas significantly advancedour
ability to study the neural dynamics of the continuous flow of
thoughts, it still faces important limitations. A major challenge lies in
capturing the fully unconstrained and spontaneous nature of real-
world thought. Spontaneous thoughts are deeply intertwined with
real-life contexts and actions75, and the fixed setting of verbalizing
thoughts in an MRI machine may restrict their natural contents and
flow. Moreover, the presence of experimenters and the awareness of
being recorded can lead to self-censorship or over-explanation, as
indicated by the higher percentage of general semantic descriptions in
our data (Fig. 1b, Semantic-world) compared to prior reports11. Even
without social influences, the very act of consciously accessing and
verbalizing thoughts could potentially alter the trajectory of sponta-
neous thinking76. As a result, the cognitive and neural processes
engaged during the think-aloud task are likely similar to, but not
identical to, those during task-free resting state or real-life mind
wandering. Future researchmay explore howmetacognition77 and the
generation of external or internal speech78 affect the structure and
transition dynamics of spontaneous memory and future thinking, as
well as the associated neural responses. Another limitation inherent to
the think-aloud task is the methodological challenge of parsing and
analyzing unconstrained verbal responses. We employed manual seg-
mentation and labeling of thoughts, following the long-standing tra-
dition of using human judgment to annotate natural language data79.
However, this approach is vulnerable to human error and incon-
sistencies across annotators, especially when only a single annotator is
used per transcript. With recent advances in language models, auto-
mated annotation may offer a promising avenue for enhancing both
the consistency and scalability of analyzing naturalistic verbal
responses in future research79–81.

In conclusion, our study uncovers the cognitive and neural pro-
cesses underlying the spontaneous flow of retrospective and pro-
spective memory, bridging the fields of memory and spontaneous
thought. Specifically, the default and control networks play a crucial
role in thought transitions, and their interactions shape the overall
structure of thought trajectories. Understanding these dynamics aids
in decoding resting state neural activity26,27, which has been widely
used to explore the neural underpinnings of both clinical conditions
and basic cognitive processes. Furthermore, the unfolding of sponta-
neous thoughts over time reflects the organization of naturalistic
thought and predicts individual differences in personality32,43,59, mental
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health20,29,82, and well-being83,84. By investigating the neural mechan-
isms underlying unconstrained thought dynamics, our findings may
inform future research aimed at assessing psychological conditions
and developing interventions to support cognitive and emotional
health.

Methods
The current study adheres to ethical regulations governing research
involving human participants. All experimental procedures were in
accordance with protocols approved by the Institutional Review
Boards (IRB) of Johns Hopkins Medicine and Homewood.

Participants
We recruited 126 healthy participants from the Johns Hopkins Uni-
versity community (age 18–40 years, mean age 23.7 years). No statis-
tical method was used to predetermine the sample size. Participants’
self-reported biological sex indicated that 76 were female and 50 were
male. As sex or gender effects were not the primary focus of the cur-
rent study, these factors were not incorporated into the study design
or analysis. All participants were right-handed native English speakers
and reported normal hearing as well as normal or corrected-to-normal
vision. Informed consent was obtained following procedures
approved by the Johns Hopkins Medicine IRB. Participants received
monetary compensation for their time ($30 per hour for the fMRI
portion and $15 per hour for the behavioral portion).

Of the 126 participants initially recruited, 8 were excluded from
both behavioral and fMRI data analyses for the following reasons: poor
quality of speech audio recordings (5 participants), scanning inter-
ruptions due to technical issues (2 participants), and failure to adhere
to instructions (1 participant). An additional 43 participants were
excluded from the fMRI data analysis due to: excessive head motion,
defined as a mean framewise displacement greater than 0.5mm (39
participants); anomalies in brain structure (2 participants); technical
issues related to visual presentation using the projector (1 participant);
and an unidentified artifact in the MRI data (1 participant). Conse-
quently, 118 participants were included in behavioral data analyses (73
females, age 18–39 years, mean age 23.4 years), and 75 participants
were included in fMRIdata analyses (43 females, age 18–36 years,mean
age 23.4 years).

Study procedures
Participants completed a single 10-min think-aloud session in the MRI
scanner, during which they verbally described their spontaneous flow
of thoughts (Fig. 1a). They were instructed to continuously speak out
loudwhatever thoughts came to theirminds, including but not limited
to memories of past events, plans for the future, or any bodily sensa-
tions, sights, sounds, or other feelings that captured their attention
during the experiment. Participants were instructed to let their
thoughts flow freely and not force themselves to stick to a single topic.
They were asked not to entertain the experimenter or explain their
thoughts by providing background information. Participants were
allowed to refrain from verbalizing private thoughts if they did not
wish them tobe heard. Instead, theywere instructed to brieflymention
the topic of the thought and state that they did not want to share it
(e.g., It reminded me of my parents but I will not talk about it).

Participants began speaking when the word “Begin” appeared in
white text on a gray screen. After 2 s, the “Begin”message disappeared,
and a white fixation cross was presented at the center, remaining on
the screen throughout the task. Participants were instructed to keep
their eyes open and look at the fixation cross. However, they were not
required to maintain fixation on the cross for the entire task, and their
eyemovementswere notmonitored. The visual stimuli werepresented
on the screen located behind the magnet bore and viewed via an
angled mirror, using Psychophysics Toolbox Version 3 (http://
psychtoolbox.org). Participants’ speech was recorded using an MR-

compatible microphone (FOMRI II; Optoacoustics Ltd.) and Audacity
software (https://www.audacityteam.org). To reduce speech-induced
head motion, participants were instructed to keep their heads still
inside the scanner and speakusingonly their jawwhile keeping the rest
of their head fixed. The experimenter also demonstrated this techni-
que to participants before each scanning session.

In all but two participants, various tasks unrelated to the current
study were performed following the think-aloud task. The remaining
two participants performed the think-aloud task at the end of the
scanning session, following the unrelated tasks. The unrelated tasks
included listening to audio stories, generating word chains, watching
screen recording videos, browsing the web, and verbally recalling
memories. Different combinations of these tasks were performed in
each scanning session, and the results from these taskswill be reported
elsewhere.

After the fMRI scanning session, participants received a link to a
battery of online questionnaires asking about their personality traits,
mental health, and demographic information. They were instructed to
complete the questionnaires within 2 days following the fMRI session.
Sixty-nine out of the 126 participants completed the questionnaires.
Results from the questionnaires will be reported elsewhere.

Behavioral data preprocessing
The audio recording of each participant’s think-aloud response was
transcribed either manually or automatically using Whisper (Large-v2
model; OpenAI) and subsequently manually corrected. Each transcript
was segmented into sentences, and timestampswere identified for the
beginning and end of each sentence. Transcribed sentences that
ended before the beginning of the scan or began after the end of the
scan were excluded from analysis.

The transcripts, formatted with each row corresponding to a
single sentence, were further processed by 15 independent human
annotators for thought category and topic labeling. Each transcript
was handled by a single annotator, with each annotator processing an
average of 7.9 transcripts (range: 1–35). Annotators received the
transcripts as spreadsheet files and were allowed to work remotely on
their personal computers. To promote consistency, all annotators
were provided with the same written task instructions. Additionally,
two quality-checked transcripts (sub-001 and sub-007) completed by
the first annotator were shared as examples for all other annotators to
review before beginning the tasks.

First, annotators were instructed to label the category of the
thought described in each transcribed sentence by entering a number
from 0 to 6 in the Category column of the transcript spreadsheet. The
numbers corresponded to the following categories: 0) filler utterances
without specific content (e.g., Uh, Um…, What else), 1) current state,
action, or sensation during the experiment, 2)memories of past events
in specific times or places (e.g., I went hiking yesterday), 3) general
knowledge or opinion about oneself (e.g., I like hiking), 4) general
knowledge or opinion about theworld or other people, 5) imagining or
planning the future, and 6) other utterances that cannot be categor-
ized as any of the above categories. No additional instructions were
provided, and annotators used their best subjective judgment to
categorize each sentence.

Annotators also labeled the topic of the thought described in each
sentence. They were instructed to enter a short topic label (ideally 1 to
3 words) in the Topic column of the transcript spreadsheet (e.g., MRI
scanning, cold weather, flu shot). For filler utterances, they entered
“filler.” There was no predefined set of topic labels, and annotators
were free to generate any label that best represented the thought.
However, to ensure consistency within each transcript, they were
instructed to use the same label if the same topicwas repeatedwithin a
single spreadsheet. In case either the thought category or the topic of
the thought changed within a single sentence, annotators were asked
to break the sentence into multiple clauses, ensuring that no segment
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was coded as having more than one category or topic. During the
analysis stage, consecutive sentences or clauses with the same cate-
gory describing the same topic were combined to form a single
thought unit (Fig. 1a). All completed transcripts were manually
reviewed for readily identifiable errors, including missing labels and
typos. Because each transcript was annotated by a single individual,
cross-examination across annotators was not conducted.

Thought category transition probability
To examine how shared neurocognitive states influence thought
dynamics, we applied a Markov chain approach, where the probability
of a discrete state is predicted based on the previous state. This
approach has been previously used to study the structure of transi-
tions between self-generated thoughts with different affective states,
such as positive and negative thoughts, and their relationship with
personality and mental health29,43,44. Here, we extended it to analyze
transition probabilities between thought categories likely reflecting
general neurocognitive states. Within each participant, these prob-
abilities were computed between individual sentences rather than
coarser thought units to avoid bias. Consecutive thought units were
biased against belonging to the same category because transitions
between thought categories were used to define their boundaries. Six
thought categories were analyzed, excluding fillers: current state,
semantic-world, semantic-self, episodic, future-oriented, and other
(Fig. 3a). For eachcategory,we calculated theproportionof eachof the
six categories immediately following it. This resulted in a six-by-six
transition probability matrix for each participant, where each row
represents the current category and each column represents the next
category. If a participant’s response did not contain a particular cate-
gory, the transition probabilities from that category (i.e., the row for
that category) were considered nonexistent and excluded from the
analysis. We then tested whether specific transitions between cate-
gories occurred more frequently than expected by chance. For each
pair of current and next categories in the transition probabilitymatrix,
we performed a two-tailed paired t-test, comparing the transition
probabilities to the overall proportion of the next category among all
sentences generated within each participant.

Semantic similarity between thoughts
To quantify semantic similarity between thoughts, we employed a
natural language processing technique that transforms text into
embedding vectors. We used a pretrained model (all-mpnet-base-v2)
implemented in the Sentence Transformers Python module (version
2.2.0; https://www.sbert.net) to convert the transcribed text of each
thought unit into a 768-dimensional vector. Semantic similarity
between pairs of thought units was then defined as the cosine simi-
larity between their respective embedding vectors (Fig. 3b).

To examine the effect of temporal proximity on semantic simi-
larity between thoughts,we computed the semantic similarity between
each thought unit (i.e., target) and the 15 thoughts preceding and
following the target within each participant (Fig. 3c). The semantic
similarity as a function of lag from the target was averaged across all
target thoughts within each of the five thought categories, excluding
Filler and Other. To directly compare thoughts that are near and far
from the target, we averaged the semantic similarity at lags 1 and −1
(near) and at lags 15 and −15 (far) within each participant and thought
category. We then performed two-tailed paired t-tests for each cate-
gory, using lag (near, far) as a within-participant factor.

To compare the semantic similarity at different types of thought
boundaries, we averaged the semantic similarity between consecutive
thoughts within each type of boundary: (1) where only the category of
thoughts changed, (2) where only the topic of thoughts changed, and
(3)whereboth the category and topic changed. The averagingwasdone
for each participant. We then performed a one-way repeated-measures
ANOVA with thought boundary type as a within-participant factor.

Thought boundary agreement
To measure the subjectively perceived strength of boundaries
between thoughts without explicitly considering thought categories
or topics, we assessed inter-subject agreement on boundary
perception using a group of human coders independent from
those who annotated thought categories and topics. Inter-subject
boundary agreement, widely used in studies of stimulus-driven
event boundaries49,81,85, offers a reasonable proxy for the fMRI parti-
cipants’ own perception of boundaries. Prior studies have shown
that individuals tend to converge on which moments constitute
boundaries and which do not86,87, enabling the reliable detection
of perceived boundaries even with relatively small samples88. More-
over, independently coded boundary agreement has been shown
to correlate with neural responses in a separate group of
participants49,85, supporting its validity as a measure of perceived
boundary strength.

We recruited 185 coders online fromSona and Prolific tomanually
segment the think-aloud responses of the 118 fMRI participants. The
coders provided informed consent following procedures approved by
the Johns Hopkins Homewood IRB. According to the consent form,
participation was open to individuals aged 18 to 65 who could
understand English. However, no demographic or personal informa-
tion was collected beyond user identification codes. Coders recruited
via Sona received course credit, and those recruited via Prolific were
paid $16 per hour.

Each coder was providedwith think-aloud transcripts, where each
row corresponded to a sentence or clause containing a single thought
category and topic. The coders were instructed to use their best sub-
jective judgment to segment each transcript into individual thought
units by assigning different numbers to rows representing different
thoughts (Fig. 3d). The offset of the last sentence/clause of one
thought before a new thought began was identified as the thought
boundary. The coders also identified filler utterances that did not
correspond to specific thoughts (e.g., uh, um); changes to or from
fillers were not considered as thought boundaries. The coders’
responses were manually reviewed and deemed problematic if they
were (1) incomplete, (2) repeatedly cycling through a small set of
thought numbers (e.g., 1,3,2,1,1,2,…), or (3) misclassifying non-filler
sentences/clauses as filler utterances. This resulted in the exclusion of
data from an additional 19 coders.

Each coder read an average of 3.83 think-aloud transcripts (range:
1–10), and each transcript was segmented by an average of 6 coders
(range: 5–8). Boundary agreement was defined as the proportion of
coders who identified a given moment as a boundary, serving as a
proxy for perceived boundary strength. To compare boundary
strength at different types of thought boundaries (i.e., category
change only, topic changeonly, both change) as defined by themanual
category and topic coding, we averaged the boundary agreement
scores within each participant for each boundary type. We then per-
formed a one-way repeated-measures ANOVA with thought boundary
type as a within-participant factor.

MRI data acquisition
MRI scanning was conducted at the F. M. Kirby Research Center for
Functional Brain Imaging at Kennedy Krieger Institute on a 3 Tesla
Philips Ingenia Elition scanner with a 32-channel head coil. Functional
images were acquired using a T2*-weighted multiband accelerated
echo-planar imaging (EPI) sequence (TR = 1.5 s; TE = 30ms; flip
angle = 52°; acceleration factor = 4; 60 oblique axial slices; grid size
112 × 112; voxel size 2 × 2 × 2mm3). Fieldmap imageswere also acquired
to correct for B0 magnetic field inhomogeneity (60 oblique axial sli-
ces; grid size 112 × 112; voxel size 2 × 2 × 2mm3). Whole-brain high-
resolution anatomical images were acquired using a T1-weighted
MPRAGEpulse sequence (150 axial slices; grid size 224 × 224; voxel size
1 × 1 × 1mm3).
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MRI data preprocessing
MRI data collected during think-aloud sessions were first organized
into the Brain Imaging Data Structure (BIDS) format using custom
scripts. Preprocessing of high-resolution anatomical images and cor-
tical surface reconstruction were performed using the recon-all pipe-
line of FreeSurfer89 (version 7.2.0). Functional images were
preprocessedusing fMRIprep90 (version 21.0.2;RRID:SCR_016216)with
default settings. Specifically, functional images were corrected for
headmotion andB0magnetic inhomogeneity. Functional imageswere
then coregistered to the anatomical image and resampled to the
fsaverage6 template surface (for cortical analysis) and the MNI 152
volume space (for subcortical analysis). Additionally, functional ima-
ges were smoothed (FWHM=4mm) in the surface space using Free-
Surfer’s mri_surf2surf and in the volume space using FSL’s SUSAN91

(Smoothing over Univalue Segment Assimilating Nucleus). To remove
high- and low-frequency drift and noise related to motion, physiolo-
gical responses, and scanner artifacts, nuisance regressors including
linear and quadratic trends, six head motion parameters (translation
and rotation in the x, y, and z dimensions), and the average time
courses of the whole-brainmask, cerebrospinal fluid, andwhitematter
were then projected out from the smoothed data. To preserve signals
associated with the think-aloud task, additional bandpass filtering was
not applied. The resulting time series were z-scored within each vertex
or voxel across all volumes within the scanning run. Within each
scanning run, the first 10 volumes were discarded. Motion outlier
volumes (framewisedisplacement ≥1mm), alongwith the two volumes
immediately preceding and following each outlier, were also excluded
from the analysis.

Cortical parcellation and region of interest (ROI) definition
For whole-brain activation and pattern similarity analyses, we used a
cortical parcellation atlas based on functional connectivity patterns
identified through fMRI35. The atlas divides the cortical surface into
400 parcels, with 200 parcels in each hemisphere, which are grouped
into 17 functional networks identified in a previous study92.

For region-of-interest analyses, we defined the bilateral posterior-
medial cortex (PMC) and the bilateral auditory cortex (Fig. 4a) by
combining parcels from the 400-parcel atlas that correspond to the
regions. The PMC ROI included parcels from the posterior cingulate
cortex and precuneus within Default Network A. The auditory cortex
ROI consisted of parcels around the primary and secondary auditory
cortices within Somatomotor Network B (see Supplementary Table 17
for the list of parcels included in the ROIs). The bilateral hippocampus
mask was obtained from the subcortical atlas (Aseg) provided by
FreeSurfer, using the MNI volume space as reference.

For functional connectivity analysis, we extracted individual
subregions from three a priori functional networks of interest out of
the 17 networks in the atlas: Control NetworkB, Default NetworkA, and
Default Network C (Fig. 6d). Parcels corresponding to each subregion
defined by the atlas were combined to form a single region. Control
Network B consisted of subregions in the interior parietal lobule (IPL),
dorsal prefrontal cortex (PFCd), lateral dorsal prefrontal cortex
(PFCld), lateral ventral prefrontal cortex (PFClv), medial posterior
prefrontal cortex (PFCmp), and temporal lobe. Default Network A
consisted of subregions in the IPL, PFCd, medial prefrontal cortex
(PFCm), temporal lobe, and PMC. Default Network C consisted sub-
regions in the IPL, parahippocampal cortex (PHC), and retrosplenial
cortex (Rsp). Additionally, we included the hippocampus as a sub-
region of Default Network C.

Univariate activation for different thought categories
We performed whole-brain univariate activation analysis to identify
regions recruited during spontaneous memory recall and future
thinking. For each participant, we computed the mean activation for
each thought category within each cortical parcel from the 400-parcel

atlas. This was done by first averaging the preprocessed blood oxy-
genation level-dependent (BOLD) signal across all vertices within a
parcel and across TRs within each thought unit. We then averaged
these mean signals across thought units corresponding to each
thought category. Next, for each parcel, we performed group-level
contrasts between the current state category and each of the other
thought categories of interest (i.e., semantic-world, semantic-self,
episodic, and future-oriented) using two-tailed paired t-tests. The
current state category served as an active baseline because it involved
speech, like the other categories, but reflected processing of the
immediate environment without engaging memory recall or future
thinking. These contrasts resulted in whole-brain t-statistic and p-sta-
tistic maps for each of the four comparisons. We applied Bonferroni’s
correction to each contrast map to account for multiple comparisons
across all 400 parcels.

We also repeated this whole-brain analysis after excluding TRs
corresponding to thought boundary periods to account for neural
responses at thought transitions (Supplementary Fig. 1; see “Neural
responses at major thought transitions” in “Results”). A boundary
period was defined as a 6-s window beginning at the offset of the
thought immediately preceding a strong thought boundary (boundary
agreement score = 1), shifted forward by 4.5 s to account for the
hemodynamic response delay.

We additionally compared univariate activation across thought
categories within the PMC and hippocampus ROIs. For each partici-
pant and ROI, we computed the mean activation for each thought
category by averaging the preprocessed BOLD signal across vertices/
voxels and across TRs within each thought unit, and then averaging
across all thought units corresponding to each category. For each ROI,
we performed a one-way repeated-measures ANOVA with the thought
category as a within-subject factor to test for statistically significant
differences in activation across thought categories.

Finally,weexaminedPMCandhippocampusROI activation across
different thought categories while controlling for potential behavioral
confounds, including thought-specific duration, word count, and
speech rate (duration divided by word count). For each behavioral
measure, we regressed it out from the thought-wise mean activation
level of each ROI within each participant. The resulting residual acti-
vation valueswere thenused to compare groupmeanactivation across
thought categories, following the same procedures described above.
For all whole-brain and ROI analyses, the timewindows corresponding
to individual thought units were shifted forward by 4.5 s to account for
the hemodynamic response delay.

Univariate activation at thought boundaries
We first performed a whole-brain analysis (Fig. 4a) to identify brain
regions activated at strong thought boundaries, defined as those with
boundary agreement scores of 1. For each cortical parcel in each par-
ticipant, we computed the mean activation during strong thought
boundary periods and non-boundary periods. A strong boundary
period was defined as a 6-second window starting at the offset of the
thought that immediately preceded a strong boundary. A non-
boundary period was defined as the 6-s window in the middle of
thoughts lasting longer than 15 s. To account for the hemodynamic
response delay, both boundary and non-boundary timewindows were
shifted forward by 4.5 s. This selection of time bins enabled us to
capture the peak boundary response periods (Fig. 4b) while minimiz-
ing potential overlap between strong boundary and non-boundary
periods. In our data, these periods did not overlap except for a single
TR in one participant, which was excluded from the analysis. Pre-
processed BOLD signals were first averaged across all TRs within the
boundary/non-boundary periods and then across vertices within each
parcel. Next, for each parcel, we performed a group-level contrast
between the strong boundary periods and non-boundary periods
using two-tailed paired t-tests. The resulting whole-brain t-statistic
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map was corrected for multiple comparisons across all 400 parcels
using Bonferroni’s method.

We also examined activation time courses evoked by different
types of thought boundaries in the PMC and hippocampus ROIs. For
each participant and ROI, we averaged TR-by-TR activation across all
vertices/voxels within the ROI. From this activation time series, we
extracted 27-s (18 TRs) time courses locked to thought boundaries (i.e.,
from 2 TRs before to 15 TRs after the thought offset TR). The time
courses were then averaged across boundaries within each boundary
type: (1) strong thought boundaries with boundary agreement scores
of 1, (2) boundaries where only the topic of thoughts changed, and (3)
boundaries where only the category of thoughts changed. For the non-
boundary control condition, we additionally extracted and averaged
time courses locked to the middle of thoughts lasting longer than 15 s
(i.e., from 2 TRs before to 15 TRs after the middle TR). Two-tailed
paired t-test were performed to compare activation levels between
boundary and non-boundary conditions at each time point of the time
courses. Bonferroni’s correction was applied to correct for multiple
comparisons across the 18 time points.

Distributed activation pattern at thought boundaries
We conducted a whole-brain pattern similarity analysis to test if the
major mental context transition pattern observed in our prior study7

generalized to strong thought boundaries during the think-aloud task
(Fig. 4c). We first extracted strong thought boundary and non-
boundary patterns for each cortical parcel in each participant’s
brain. A strong thought boundary pattern was generated by averaging
activation patterns across all TRs within 6-s windows starting from the
offset of thoughts immediately preceding strong boundaries with an
agreement score of 1. A non-boundary pattern was generated by
averaging activation patterns across all TRs within the middle 6 s of
thoughts lasting longer than 15 s. To account for the hemodynamic
response delay, both boundary and non-boundary timewindows were
shifted forward by 4.5 s. As before, the strong boundary and non-
boundary periods did not overlap, except for a single TR in one par-
ticipant, which was excluded from the analysis.

We next computed Pearson correlations between the think-
aloud boundary/non-boundary patterns and the between-movie
boundary pattern obtained from the movie watching phase data of
our prior fMRI study7. In that study, participants watched a series of
ten short (2–8min long) audiovisual movie stimuli, separated by 6-s
title scenes. Participants subsequently verbally recalled themovies in
any order they wanted. To preserve the between-movie boundary
pattern reported in the original study as closely as possible, the
dataset was preprocessed following the pipeline described in ref. 7.
This pipeline included motion correction, B0 unwarping, coregis-
tration to the fsaverage6 cortical surface, spatial smoothing
(FWHM= 4mm), high-pass filtering (cutoff = 140 s), and z-scoring
within each functional run. We then followed the procedures
described in ref. 7 to generate the between-movie boundary pattern
for each participant. Activation patterns were first averaged across
time points within the 15-s boundary period following the offset of
each movie, shifted forward by 4.5 s. These patterns were then
averaged across all movie stimuli. The resulting activation patterns
showed consistently positive correlations across the fifteen partici-
pants analyzed (mean intersubject Pearson r = 0.404, SD = 0.096).
Finally, the patterns were averaged across participants to generate a
single, robust template pattern.

To test whether the strong boundary patterns were overall posi-
tively correlated with the between-movie boundary patterns, we per-
formed group-level two-tailed one-sample t-tests against zero on the
correlation coefficients for each cortical parcel. Additionally, group-
level two-tailed paired t-tests were performed to directly compare the
similarity of the between-movie boundary patterns to the strong
thought boundary patterns versus the non-boundary patterns.

Bonferroni’s correction was applied to each resulting whole-brain
statistical parametric map to correct for multiple comparisons across
parcels. Finally, to identify parcels showing significant effects in both
tests after correction, wemasked the areaswith higher similarity to the
strong boundary pattern compared to the non-boundary pattern with
the areas that showed overall positive similarity to the strong bound-
ary pattern. We also performed the same boundary pattern similarity
analysis within the PMC and auditory cortex ROIs, as was done for
individual parcels in the whole-brain analysis.

Finally, we tested whether the strong thought boundary patterns
in the PMC and auditory ROIs were influenced by temporary silence
due to pauses in speech at the boundaries. To do this, we compared
the think-aloud boundary/non-boundary patterns with the activation
pattern associated with silence, measured during the movie watching
phase of ref. 7. Silent periods were defined as moments in the movies
when the audio amplitude, convolved with a hemodynamic response
function, fell to the mean amplitude observed during the title scenes
betweenmovies with no sound. To prevent potential carryover effects
from the between-movie boundaries, we excluded time points within
the first 45 s of eachmovie from the silent periods. Activation patterns
were averaged across all time points within the silent periods for each
participant and then across participants. We performed group-level
two-tailed one-sample t-tests against zero to test the overall positivity
of correlations between the silence template pattern and the think-
aloud boundary/non-boundary patterns. Additionally, we performed
two-tailed paired t-tests to compare the similarity of the silence tem-
plate pattern to the strong thought boundary versus thenon-boundary
patterns.

Hidden Markov model analysis
To segment thoughts in a data-driven manner based on changes in
neural activation patterns, we applied a modified hidden Markov
model (HMM) that has been previously used to detect event bound-
aries in neuroimaging data collected during naturalistic movie
watching and recall53,54. The HMM segments continuous brain activity
time series into a predefined number of discrete events, or hidden
states, based on the assumption that activation patterns remain rela-
tively stablewithin each event and shift to a new stablepattern at event
boundaries, reflecting a transition from one event to the next53.

We first conducted awhole-brain analysis to identify brain regions
where HMM-derived thought boundaries aligned with human-
identified strong thought boundaries (boundary agreement score =
1). For each cortical parcel in each participant’s brain, we fit the HMM
to the time course of its activation patterns using the event segmen-
tation module in the Brain Imaging Analysis Kit Python package (ver-
sion 0.12; https://brainiak.org). The number of events was set tomatch
the number of segments defined by the participant’s strong bound-
aries, excluding any segments that fell entirely within TRs omitted
from analysis (e.g., motion outlier periods). We then calculated the
percentage of strong boundaries that overlapped with the HMM-
derived boundaries. An HMM-derived boundary was considered
overlapping if it occurredwithin a 3-TRwindowcentered on the strong
boundary (including the strong boundary TR itself and the TRs
immediately before and after it), shifted forward by 4.5 s to account for
the hemodynamic response delay. To avoid confounds from excluded
TRs, strong boundaries occurring within 2 TRs of excluded TRs were
not included in the overlap calculation. Finally, we averaged the per-
cent overlap values across participants to obtain the group mean for
each parcel. We also applied the HMM analysis to the PMC ROI, using
the same procedures as for individual parcels in the whole-brain
analysis.

To assess the statistical significance of the percentage overlap
between HMM-derived and human-identified strong thought
boundaries, we conducted a randomization test for each region,
comparing the actual group mean to a null distribution of group
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means. To generate the null distribution, we randomly selected 3-TR
boundary windows within each participant, ensuring that these
windows did not overlapwith each other andwere at least 2 TRs away
from excluded TRs. The number of random boundary windows
matched the number of strong boundaries included in the analysis
for each participant. Next, we computed the groupmean percentage
overlap between HMM-derived boundaries and these randomly
selected boundaries. This process was repeated 1000 times to gen-
erate the null distribution. The one-tailed p value was defined as the
proportion of all percentage overlap values, including the observed
group mean, that were greater than or equal to that observed value.
The lowest possible p value was 0.000999 (1/1001), which occurred
when the actual group mean exceeded all values in the null
distribution.

Pattern similarity between consecutive thoughts
To examine the relationship between thought boundary strength and
neural similarity between pre- and post-boundary thoughts, we ana-
lyzed thought-specific distributed activation patterns in the PMC.
Within each participant, we first computed the mean PMC activation
pattern for each thought by averaging activation across TRs corre-
sponding to that thought. We then calculated Pearson correlations
between the activation patterns of consecutive thoughts. Tominimize
the effects of boundary-related responses, we excluded 6-s windows
following each thought offset. Both the time windows corresponding
to individual thought units and the excluded boundary windows were
shifted forward by 4.5 s to account for the hemodynamic response
delay. If a thought unit fell entirely within an excluded window, its
pattern similarity with neighboring thoughts could not be computed.
As a result, an average of 38.1% of consecutive thought pairs remained
for analysis (SD = 19.1). We then computed a correlation between the
remaining pattern similarity values and boundary agreement scores
for the corresponding boundaries. Spearman correlation was used
because the boundary agreement scores were not normally dis-
tributed (Supplementary Fig. 3). The resulting subject-specific corre-
lation coefficients were tested against zero at the group level using a
two-tailed one-sample t-test.

Thought network structure
To quantify the overall structure of think-aloud responses, we trans-
formed each participant’s response into a semantic network (Fig. 6a)
following the procedures developed in our prior study93. In this net-
work, the nodes represented individual thought units, and the edges
between nodes represented the semantic similarity between thoughts.
Semantic similarity between all possible pairs of thoughts was mea-
sured using the procedures described above in the “Semantic simi-
larity between thoughts” section. Specifically, each thought unit was
converted into a 768-dimensional text embedding vector, and the
cosine similarity between these vectors was computed. The resulting
network was undirected, and edges with weights below zero were
removed. Tomeasure the global structure of the thought network, we
calculated the average clustering coefficient across all nodes (Fig. 6b).
The clustering coefficient for each node was defined as the geometric
average of the subgraph edge weights, using the implementation
provided by the NetworkX Python package (version 3.1; https://
networkx.org).

Functional connectivity analysis
To examine how interactions between brain regions influence the
overall structure of thought networks, we computed functional con-
nectivity within and between brain networks involved in spontaneous
thought generation10,23,55. Specifically, we focused on Control Network
B, Default Network A, and Default Network C as defined in the 17-
network version of the 400-parcel cortical atlas35. Among the three

subnetworks of the control network (A, B, and C), Control Network B
specifically corresponds to the frontoparietal control network sub-
system (FPCNA) previously identified as positively coupled with the
default network56. Default Network A and Default Network C corre-
spond to the core default network subsystem and themedial temporal
lobe subsystem of the default network, respectively, as discussed in
prior studies10,55.

Functional connectivity was computed from the entire think-
aloud session for each participant. First, we extracted the mean acti-
vation time course of each network subregion by averaging across all
vertices/voxels within each region and hemisphere. For bilateral sub-
regions, time courses were also averaged across hemispheres (see
Fig. 6d and the “Cortical parcellation and region of interest definition”
section above for the list of subregions). Next, we computed pairwise
Pearson correlations between the activation time courses of individual
subregions. Within-network functional connectivity was then defined
as the average of correlations between different subregions within the
same network. Between-network functional connectivity was defined
as the average of correlations between all possible pairs of subregions
across two different networks.

Finally, we computed Pearson correlations between the
participant-wise average thought network clustering coefficients and
the within/between-network functional connectivity values. We spe-
cifically examined four connectivity measures hypothesized to be
associated with thought structure10,55: three between-network con-
nectivity values (Control B–DefaultA, Control B–Default C, andDefault
A–Default C) expected to be positively correlated with clustering, and
onewithin-networkconnectivity forDefaultNetworkC, expected tobe
negatively correlated with clustering. Because we tested a small
number of theory-driven, a priori hypotheses with specific directional
predictions, we did not apply multiple comparisons correction across
these network-level connectivity measures.

As a post hoc exploration, we also computed correlations
between the thought network clustering coefficients and the func-
tional connectivity between all individual subregions in the three brain
networks. Bonferroni’s correction was applied to correct for multiple
comparisons across all possible pairs of subregions. Additionally, for
exploratory purposes, we conducted supplementary analyses exam-
ining (1) the relationship between thought network clustering and
functional connectivity involving Control Network A, a subsystem of
FPCN not strongly coupled with the default network56, and (2) the
relationship between functional connectivity and the proportions of
different thought categories (see Supplementary Methods).

Statistical tests
Statistical tests wereperformed using the Scipy (version 1.12.0; https://
scipy.org) and Pingouin (version 0.5.1; https://pingouin-stats.org)
Python packages, along with custom scripts. Details of the statistical
tests used in each analysis are provided in the corresponding subsec-
tion of the “Methods” section. All statistical tests were two-tailed,
except for the one-tailed nonparametric randomization tests used in
the HMM analysis. For parametric tests comparing means across
multiple conditions,Mauchly’s testwas used to assess sphericity. If the
assumption of sphericity was violated, the Greenhouse-Geisser cor-
rected p value was reported in place of the uncorrected p value. Only
participants with complete data for all relevant conditions were
included in comparisons. Participants with missing data in any condi-
tion (e.g., those who did not generate thoughts in the current state
category when comparing current state and episodic recall) were
excluded from the relevant comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw fMRI and behavioral data from the think-aloud sessions have
been deposited on OpenNeuro.org under accession number
ds006067 [https://doi.org/10.18112/openneuro.ds006067.v1.0.0]94.
Additional data needed to reproduce the results (e.g., independent
thought boundary segmentations, text embeddings) are available on
Zenodo [https://doi.org/10.5281/zenodo.15665444]95. The previously
published fMRI dataset used to generate the between-movie boundary
pattern is also available on OpenNeuro.org under accession number
ds004042 [https://doi.org/10.18112/openneuro.ds004042.v1.0.1]96,97.

Code availability
All analyses in this study were conducted using publicly available MRI
data processing software (e.g., FSL, FreeSurfer) and Python packages.
The analysis scripts used to generate the display items in this paper are
available on Zenodo [https://doi.org/10.5281/zenodo.15665444]95.
Other analysis scripts are available upon request to the corresponding
author (H.L.).
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