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We investigated the locking behaviors of coupled limit-cycle oscillators with phase and amplitude dynamics.
We focused on how the dynamics are affected by inhomogeneous coupling strength and by angular and radial
shifts in the coupling function. We performed mean-field analyses of oscillator systems with inhomogeneous
coupling strength, testing Gaussian, power-law, and brain-like degree distributions. Even for oscillators with
identical intrinsic frequencies and intrinsic amplitudes, we found that the coupling strength distribution and
coupling function generated a wide repertoire of phase and amplitude dynamics. These included fully and
partially locked states in which high-degree or low-degree nodes would phase-lead the network. The mean-field
analytical findings were confirmed via numerical simulations. The results suggest that, in oscillator systems
in which individual nodes can independently vary their amplitude over time, qualitatively different dynamics
can be produced via shifts in the coupling strength distribution and the coupling form. Of particular relevance
to information flows in oscillator networks, changes in the non-specific drive to individual nodes can make
high-degree nodes phase-lag or phase-lead the rest of the network.

Models of coupled oscillators have been widely
used across variety of disciplines including
physics, chemistry, and biology to describe the
dynamics of systems with interacting elements.
For example, fireflies adjust their blinking accord-
ing to the light-flashes they see around them,
and clusters of neurons produce rhythmic fir-
ing, whose timing depends on the input from
other neurons. Previous studies have analyzed
these coupled systems in phase-reduced models,
in which each node in the network is treated like a
cycling clock. However, in many real-world appli-
cations, such as in brain networks, the amplitude
of activity at one location affects the response
at another location, just as more neuronal fir-
ing will produce a larger effect at recipient sites.
Therefore, it is important to study dynamics of
such systems using models that account for both
the phase and amplitude of the dynamics of each
node. To this end, we analyzed the dynamics of
coupled identical oscillator with phase and ampli-
tude dynamics. We focused on how the dynamics
are altered by two factors: first, the inhomogene-
ity in the coupling strength (so that some nodes
have stronger connections than others) and sec-
ond, the coupling function (how the response of a
target node depends on the phase and amplitude
of a source node). Building on previous works
which have focused on the phase dimension of the
dynamics, we mapped a rich repertoire of am-
plitude dynamics and phase dynamics, depend-
ing on the distribution of connection strengths
and the form of the coupling function. Condi-
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tions for each of the possible classes of dynam-
ics were identified using stability analysis, follow-
ing a self-consistency argument, and the results
were confirmed via numerical simulation. Of par-
ticular interest for neuroscience, we found that
groups of nodes could shift from phase-leading
to phase-lagging, depending on minor changes in
the coupling function. Thus, small changes in a
non-specific driving signal in the brain can cause
shifts in the direction of signaling between brain
regions. More generally, we also observed a vari-
ety of non-locked states (”drifting” dynamics) in
which only a subset of strongly connected nodes
in the network are strongly synchronized, while
other nodes on the periphery operate more inde-
pendently.

I. INTRODUCTION

Coupled oscillator systems provide models for systems
of interacting elements in many fields, including physics,
chemistry, and biology.1–8 The intrinsic dynamics of the
oscillators, the couplings between the oscillators, and
the connectivity among the oscillators jointly determine
the dynamics of the coupled system. For the gener-
ality of the model and ease of analysis, many studies
have focused on phase dynamics of the coupled oscil-
lator systems.9–15 Even within phase-reduced systems,
lacking any variation in amplitude, oscillator systems ex-
hibit a rich repertoire of various synchronous behaviors
such as in-phase synchronization, full locking, chimera
state, and partial locking.16 However, the physics of
many real-world systems includes dramatic amplitude
dynamics: for example, in populations of neurons, the
amplitude of oscillations varies dramatically across dif-
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ferent brain regions and over time, with important func-
tional implications.17–20 Therefore, oscillator models in-
corporating both phase and amplitude dynamics have
been investigated, with a focus on the global stability
of the system. These stability-focused studies revealed
diverse outcomes, including amplitude death, chimera
states, and phase-delay effects.21–27. In the present work,
rather than focusing on whether synchronization occurs,
we focus on the variability in phase and amplitude across
nodes, and how these are controlled by system-wide pa-
rameters. In particular, we focus on cases in which the
network has inhomegeneous degree distributions, so that
some nodes are more influential than others, and aim to
characterize how high (or low) degree nodes may come to
have increased (or decreased) amplitudes and to phase-
lag (or phase-lead) the rest of the network.

The detailed interactions of phase-and-amplitude
dynamics are especially important in the understanding
of neural systems, because they may explain global
state transitions associated with distinct modes of brain
function. For example, Moon et al.28 showed that the
phase-and-amplitude relationships differ before and after
anesthesia, and demonstrated how this phenomenon
could be captured in a Stuart-Landau model. More
generally, it is critical to provide a theoretical frame-
work to organize the diverse various locking behaviors
observed in neural oscillatory systems, as the changes in
these systems are associated with large-scale functional
changes (sleep/wake, active/passive), and the controllers
of such state-shifts remain largely unknown.29–43

In this paper, we study how the phase and amplitude
dynamics of coupled oscillators depend on (i) spatial in-
homogeneity in coupling strengths and (ii) the form of
coupling function between nodes. These two factors com-
bine to produce rich repertoire of synchronous behaviors
in terms of both phases and amplitudes of the oscilla-
tors. Numerical simulations with Gaussian, power-law,
and brain network distributions of the coupling inho-
mogeneity show the conditions for different categories of
various synchronous states ranging from un-locked state,
partially locked state to fully locked state. Analytical
approximations were in agreement with our numerical
results. This work can understood as a generalization
of previous work examining coupling inhomogeneity in
phase-based oscillators16, extending the analysis to in-
clude variability in amplitude.

II. MODEL AND ANALYSIS

We investigate a generalized form of coupled identi-
cal limit cycle oscillators, in the form of Stuart-Landau
model. Stuart-Landau model is a canonical model, in the
sense that oscillator systems reduce to the Stuart-Landau
model near a Hopf bifurcation.44,45 Thus, we consider a
mean-field model of N weakly coupled Stuart-Landau os-

cillators, each near a Hopf bifurcation:

żj = {λj − |zj |2 + iωj}zj +
SKj

N

N
∑

k=1

(zke
−iβ − zjd0e

−iα),

j = 1, 2, ..., N, α ∈ [0, π), β ∈ [0, π/2), d0 ∈ R,

(1)

where zj(t) = rj(t)e
iθj(t) is the position of an oscillator

j in the complex plane at time t. S is a parameter con-
trolling the global coupling strength in the system, and
Kj(> 0) corresponds to the effective coupling strength to
an oscillator j from the population. All oscillators possess
identical intrinsic frequency ωj = ω. λj is the bifurca-
tion parameter controlling how fast the trajectory decays
onto the attractor; in this model we consider λj = λ > 0

for all j = 1, 2, 3...N , such that
√
λ is considered as the

”intrinsic amplitude” to which the oscillator converges in
the absence of the coupling. β is a phase delay term, and
d0e

−iα is a constant that translates zj by a fixed amount
in both amplitude and phase. (Alternatively, one could
consider α ∈ [0, 2π) and d0 ∈ R > 0, but for simplic-
ity in analysis we consider the above parameters). Note
that Eq. (1) is a generalized form of diffusively coupled
Stuart-Landau oscillators, such that when α = 0, β = 0,
and d0 = 1, the coupling function becomes H = zk − zj ,
which has been studied extensively.22,46–51 In polar coor-
dinates, the model is written as

θ̇j = ω +
SKj

N

N
∑

k=1

[
rk
rj

sin(θk − θj − β) + d0 sinα], (2)

ṙj = (λ− |rj |2)rj

+
SKj

N

N
∑

k=1

[rk cos(θk − θj − β)− rjd0 cosα], (3)

where θj(t) is the phase and rj(t) is the amplitude of
an oscillator j at time t. This is a direct extension of
the phase-reduced model investigated in Ref. 16. The
phase-reduced model is derived from Eq. (2) by setting
the amplitudes of all oscillators to be constant and equal.
As explained further in Section IV, the mean-field model
serves as an approximation of a full network model with
sufficiently large N , where Kj , the coupling strength, is
directly proportional to the degree of node j.52,53

We investigate the effect of β, α, d0 and {Kj} on
the dynamics of the coupled oscillators. {Kj} describes
the distribution of coupling strengths, while different
values of β, α, and d0 further determine the form
of coupling function between nodes. Note that the
main source of inhomogeneity in the system is through
inhomogeneous values of Kj for the oscillators. Instead
of varying the intrinsic properties of oscillators through
ωj, which has been an often adopted approach for
many previous studies10,54,55, we focus on the dynamics
created through inhomogeneous coupling strengths while
assuming identical oscillators with ωj = ω. This has a
more practical implication for understanding real-world
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complex networks: in brain networks, for example,
individual patches of cortical tissue are often modeled
as identical units, differentiated only by the pattern
and strength of connections they maintain with other
nodes.56

To study the effect of d0, α, β, and {Kj} on the dynam-
ics of the system, we perform a similar self-consistency
analysis as in Ref. 16 with the added amplitude dimen-
sion. To simplify our notation, we set S = 1 in the fol-
lowing analysis without loss of generality.
Let Ω denote the frequency of the population os-

cillation described by the order parameter R̃eiΘ ≡
1
N

∑N
j=1 rje

iθj in a stationary state. Then

φ̇j = ∆+Kj

[

d0 sinα+
1

rj
R̃ sin(Φ− φj − β)

]

, (4)

where φj ≡ θj −Ωt, ∆ ≡ ω−Ω, and Φ ≡ Θ−Ωt. When

the system reaches a stationary state, R̃ and Φ do not
depend on time. Additionally,

ṙj = λrj − rj
3 +Kj

[

R̃ cos(Φ− φj − β)− rjd0 cosα
]

.

(5)

The oscillators phase-locked with frequency Ω in the
original frame of reference are those with Kj ∈ Dl ≡
{Kj : KjR̃ > |∆ + Kjd0 sinα|rj∗ } asymptotically ap-
proaching a stable fixed point z∗j = (φj

∗, rj
∗) of Eqs. (4)

and (5), satisfying the following equations:

(∆ +Kjd0 sinα)r
∗
j = KjR̃ sin (φj

∗ − Φ + β) (6)

(λ− r∗j
2 −Kjd0 cosα)r

∗
j = −KjR̃ cos (φj

∗ − Φ + β)

(7)

from φ̇j = 0 and ṙj = 0 respectively. This coupled system
yields an exact equation for rj

∗ as

{(∆ +Kjd0 sinα)
2 + (λ− r∗j

2 −Kjd0 cosα)
2}r∗j 2

= (KjR̃)
2
. (8)

Furthermore,

cos (φj
∗ − Φ + β) > 0 (9)

λ− 3r∗j
2 −Kjd0 cosα < 0 (10)

due to the stability of the fixed point. Combining Eqs.
(7) and (9) gives

λ− r∗j
2 −Kjd0 cosα < 0 (11)

which, when applied to Eq. (8), yields one real positive
solution for r∗j .
From Eqs. (6), (7) and (9), we obtain the fixed points:

φj
∗ = sin−1

[

(∆ +Kjd0 sinα)r
∗
j

KjR̃

]

+Φ− β (12)

= cos−1

[

−(λ− r∗j
2 −Kjd0 cosα)r

∗
j

KjR̃

]

+Φ− β.

(13)

Here we consider two curves (Kj , φj
∗) and (Kj , rj

∗),
defined as the distributions of φj

∗ and rj
∗ as functions

of Kj . The slopes of these curves can provide useful in-
formation for understanding the dynamics of the oscilla-
tors with regard to coupling strength. First, the slope of
(Kj , φj

∗) curve for locked oscillators describes the phase
distribution over the oscillators with regard to the dis-
tribution of the coupling strength. This slope is given
by

∂φj
∗

∂Kj

= −
∆ · r∗j

Kj
2R̃ cos (φj

∗ − Φ+ β)
. (14)

With the condition Eq. (9), the sign of the slope fur-
ther reduces to

sign

(

∂φj
∗

∂Kj

)

= −sign
(

∆ · r∗j
)

= −sign (∆) (15)

since r∗j > 0 at the stable point. This means only the sign
of ∆ determines the sign of the slope and the phase mono-
tonically increases or decreases asKj increases within the
locking range of Kj values. When the locked oscillators
oscillate with frequency Ω greater than the intrinsic fre-
quency ω (∆ < 0), the slope is positive. On the other

hand, the oscillators with Kj ∈ Dd ≡ {Kj : KjR̃ <
|∆+Kjd0 sinα|r∗j } drift monotonically without locking.
We refer to these oscillators as drifting population.

In order to reveal how the amplitudes of the locked
oscillators change as a function of the coupling strength,
slope of the (Kj , rj) curve can next be found. From Eq.
(6) we can derive

∂rj
∗

∂Kj

=
∆R̃ sin

(

φ∗
j − Φ+ β

)

(∆ +Kjd0 sinα)
2 . (16)

which reduces to

sign

(

∂rj
∗

∂Kj

)

= sign
{

∆sin
(

φ∗
j − Φ + β

)}

(17)

=











sign (∆) if φ∗
j − Φ + β ∈ (0, π

2 )

−sign (∆) if φ∗
j − Φ + β ∈ (−π

2 , 0)

0 if φ∗
j − Φ + β = 0.

This indicates that the slope is not necessarily monotonic.
Since Φ = 0 at the stationary state by definition, the
values of φ∗ and β determine the sign of the slope with
respect to ∆. For example, if φ∗

j + β falls in the range
of (−π

2 ,
π
2 ), then the inflection point will occur at where

φ∗
j + β = 0.

We now calculate the order parameter contributions
from the locked and drifting subpopulations in the ro-
tating frame. The self-consistency condition requires
that R̃ = R̃lock + R̃drift. Noting that ei(φ−Φ+β) =
cos(φ − Φ + β) + i sin(φ − Φ + β) and using Eq. (6),
the contribution from the locked oscillators can be calcu-
lated as follows for a given coupling strength distribution
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g(K):

R̃l =

∫

Dl

g(K)r∗eiφdK

= e−iβ

∫

Dl

g(K)r∗

√

K2R̃2 − (∆′)2r∗2 + i∆
′

KR̃
dK,

(18)

where the abbreviation ∆
′ ≡ ∆ + Kd0 sinα is used for

simplification. Combining Eqs. (8) and (11) yields an
exact solution for r∗.

In order to determine the order parameter contribu-
tion from the drifting subpopulation, we follow the sim-
ilar perturbation method used in Ref. 48. The differ-
ence here is that the current model replaces the term ∆
with the added desynchronization factor ∆ +Kjd0 sinα

as shown in Eq. (4). In incoherent state, R̃ = 0 and
r =

√
λ−Kd0 cosα ≡ a. To find the bifurcation, we give

a small perturbation ǫ to the system such that R̃ = ǫR̃1

where R̃1 is a nonzero constant, r = a + O(ǫ), and
φj(t) = φ0 + (∆ + Kjd0 sinα)t + O(ǫ). We seek a self-
consistent partially locked solution to the first order in ǫ
by finding the bifurcation from the incoherent state. By
perturbing around the ǫ = 0 solution rj(t) = a, φj(t) =
(∆+Kjd0 sinα)t+φ0, we obtain the path of the limit cy-
cle as rj = a+ǫ[A cos(φ−Φ+β)+B sin(φ−Φ+β)]+O(ǫ2),

where A = 2a2

(∆′)2+4a4
and B = ∆

′

(∆′)2+4a4
. We now im-

pose the stationary condition requiring that oscillators
with coupling strength Kj form a stationary distribu-
tion along their limit cycles. Then the contribution to
the centroid from the drifting oscillator of degree Kj is
Rd(Kj) = e−iβǫ(A+ iB)/2 +O(ǫ2). Therefore,

R̃d =

∫

Dd

g(K)Rd(Kj)dK +O(ǫ2)

=
1

2
e−iβ

∫

Dd

g(K)KR̃
2a2 + i∆

′

∆′ + 4a4
dK +O(ǫ2).

(19)

Thus from R̃ = R̃l+R̃d we obtain two independent equa-
tions for the values of R̃ and ∆, which we can solve nu-
merically for given α, β, d0, and g(K). We note that
other non-perturbative methods may be applicable.57

Now, let us determine the range of Kj for which
the oscillators are phase-locked and classify the locked
states. We can find the ”locking” range of Kj by
jointly considering the sign of sinα, the sign of
∆ +Kjd0 sinα, the sign of ∆, and the locking condition

KjR̃ > |∆ + Kjd0 sinα|r∗j . The range of Kj and the

slope of (Kj , φj
∗) for the locked oscillators are as follows:

(i) If d0 sinα ≥ 0:







































(a) S1 :
|∆|r∗j

R̃+d0 sinαr∗
j

< Kj , l+ if R̃ ≥ d0 sinα r∗j , ∆ ≤ 0

(b) S2 :
∆r∗j

R−d0 sinα r∗
j

< Kj, l− if R̃ > d0 sinα r∗j , ∆ > 0

(c) S3 :
|∆|r∗j

R̃+d0 sinαr∗
j

< Kj <
|∆|r∗j

d0 sinαr∗
j
−R̃

, l+

if R̃ < d0 sinα r∗j , ∆ < 0

(d) S4 : no locking range if R̃ < d0 sinα r∗j , ∆ ≥ 0

(20)

(ii) If d0 sinα < 0:







































(a) S1 :
|∆|r∗j

R̃+|d0 sinα|r∗
j

< Kj , l+ if R̃ > |d0 sinα|r∗j , ∆ ≤ 0

(b) S2 :
∆r∗j

R−|d0 sinα|r∗
j

< Kj, l− if R̃ ≥ |d0 sinα|r∗j , ∆ > 0

(c) S3 :
∆r∗j

R̃+|d0 sinα|r∗
j

< Kj <
∆r∗j

|d0 sinα|r∗
j
−R̃

, l−

if R̃ < |d0 sinα|r∗j , ∆ > 0

(d) S4 : no locking range if R̃ ≤ |d0 sinα|r∗j , ∆ ≤ 0

(21)

where the two equalities of (ia) and (iid) do not hold at
the same time. l−, l0, and l+ represent the negative,
the zero, and the positive slope of (Kj, φj

∗) respectively.
Overall, this analysis reveals the same set of states S1-
S4 originally reported for the phase-reduced model in
Ref 16. However, one crucial difference from the previ-
ous work is that the set of states are now generalized
to include amplitude dynamics that vary independently
of the phase dimension. Furthermore, we have identi-
fied more general cases, differentiated by the sign of the
constant term d0 sinα. In particular, the dynamics for
d0 sinα < 0 demonstrate the possibility of new sub-states
S3l−, S3l−d, S3dl−, and S3dl−d. Qualitatively, the S3
states are distinct from other states, because the high-
degree nodes have the possibility to drift in phase. The
conditions and the characteristics of these states are sum-
marized in Table I and II. Table I describes the states
under condition (i), and Table II describes those under
condition (ii) above. Note that the sub-states are defined
only in terms of dynamics in the phase dimension (e.g.,
locked/drifting). The amplitude dynamics can poten-
tially differ within the same sub-state, as will be shown
in the phase diagram in the next section.

III. NUMERICAL SIMULATIONS

We now describe numerical results of the oscillator
model (Equation 1) with coupling strengths derived from
networks with different degree distributions: Gaussian,
power-law, and brain-network-derived. All numerical
simulations were carried out using a fourth order Runge-
Kutta method with a fixed step size of ∆t = 0.01. Os-
cillators have the identical intrinsic frequency ω = π (0.5
Hz) and λ = 1. For the initial conditions, each θj(0) was
sampled randomly from [0, 2π) to form a near incoherent
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TABLE I. Categorization of the synchronous states, for the case where d0 sinα ≥ 0: The name of state is given as Snx, following
the same naming scheme presented in Ref 16: n is the major category index, and x is composed of d, l+, l−, and l0 where d

stands for a drifting range of K, l for a locking range of K, l+, l−, l0, respectively, for positive slope, negative slope, and zero
slope of the curve (Kj , φj

∗) in the locking range of K. ∆ ≡ ω − Ω. D0 ≡ |d0 sinα|rj
∗ in the last column with rj

∗ = rmin
∗ for

Kmin and rj
∗ = rmax

∗ for Kmax. For other details, see the text.

States
Oscillators with K

from Kmin to Kmax

Slope of
(Kj , φj

∗) Sign(∆) (R̃,D0) Locking range of K Additional condition

S1l0 In-phase synchronous 0 0 R̃ > D0 [Kmin,Kmax] max R̃,∆ = 0

S1l+ Fully locked + − R̃ ≥ D0 [Kmin,Kmax]
|∆|r∗j
R̃+D0

< Kmin

S1dl+ Drifting−locked + − R̃ ≥ D0
|∆|r∗j
R̃+D0

< Kj Kmin ≤
|∆|r∗j
R̃+D0

S2l− Fully locked − + R̃ > D0 [Kmin,Kmax]
∆r∗j

R̃−D0
< Kmin

S2dl− Drifting−locked − + R̃ > D0
∆r∗j

R̃−D0
< Kj Kmin ≤

∆r∗j

R̃−D0

S2d Fully drifting − + R̃ > D0 None Kmax ≤
∆r∗j

R̃−D0

S3l+ Fully locked + − R̃ < D0 [Kmin,Kmax]
|∆|r∗j
R̃+D0

< Kmin, Kmax <
|∆|r∗j
D0−R̃

S3l+d Locked−drifting + − R̃ < D0 Kj <
|∆|r∗j
D0−R̃

|∆|r∗j
R̃+D0

< Kmin,
|∆|r∗j
D0−R̃

≤ Kmax

S3dl+ Drifting−locked + − R̃ < D0
|∆|r∗j
R̃+D0

< Kj Kmin ≤
|∆|r∗j
R̃+D0

, Kmax <
|∆|r∗j
D0−R̃

S3dl+d Drifting−locked−drifting + − R̃ < D0
|∆|r∗j
R̃+D0

< Kj <
|∆|r∗j
D0−R̃

Kmin ≤
|∆|r∗j
R̃+D0

,
|∆|r∗j
D0−R̃

≤ Kmax

S3d Fully drifting None − R̃ < D0 None
|∆|r∗j
D0−R̃

≤ Kmin or Kmax ≤
|∆|r∗j
R̃+D0

S4d Fully drifting None +, 0 R̃ ≤ D0 None ...

TABLE II. Categorization of the synchronous states, for the case where d0 sinα < 0. D0 ≡ |d0 sinα|rj
∗ in the last column

with rj
∗ = rmin

∗ for Kmin and rj
∗ = rmax

∗ for Kmax. Other details are as in Table I. Note the difference in signs of ∆ and the
boundary values in the additional conditions.

States
Oscillators with K

from Kmin to Kmax

Slope of
(Kj , φj

∗) Sign(∆) (R̃,D0) Locking range of K Additional condition

S1l0 In-phase synchronous 0 0 R̃ > D0 [Kmin,Kmax] max R̃,∆ = 0

S1l+ Fully locked + − R̃ > D0 [Kmin,Kmax]
|∆|r∗j
R̃+D0

< Kmin

S1dl+ Drifting−locked + − R̃ > D0
|∆|r∗j
R̃+D0

< Kj Kmin ≤
|∆|r∗j
R̃+D0

S2l− Fully locked − + R̃ ≥ D0 [Kmin,Kmax]
∆r∗j

R̃+D0
< Kmin

S2dl− Drifting−locked − + R̃ ≥ D0
∆r∗j

R̃+D0
< Kj Kmin ≤

∆r∗j

R̃+D0

S2d Fully drifting − + R̃ ≥ D0 None Kmax ≤
∆r∗j

R̃+D0

S3l− Fully locked + + R̃ < D0 [Kmin,Kmax]
∆r∗j

R̃+D0
< Kmin, Kmax <

∆r∗j

|R̃−D0|

S3l−d Locked−drifting + + R̃ < D0 Kj <
|∆|r∗j

|R̃−D0|
∆r∗j

R̃+D0
< Kmin,

∆r∗j

|R̃−D0|
≤ Kmax

S3dl− Drifting−locked + + R̃ < D0
∆r∗j

R̃+D0
< Kj Kmin ≤

∆r∗j

R̃+D0
, Kmax <

∆r∗j

|R̃−D0|

S3dl−d Drifting−locked−drifting + + R̃ < D0
∆r∗j

R̃+D0
< Kj <

∆r∗j

|R̃−D0|
Kmin ≤

∆r∗j

R̃+D0
,

∆r∗j

|R̃−D0|
≤ Kmax

S3d Fully drifting None + R̃ < D0 None
∆r∗j

|R̃−D0|
≤ Kmin or Kmax ≤

∆r∗j

R̃+D0

S4d Fully drifting None 0,− R̃ ≤ D0 None ...

initial state. Each rj(0) was sampled randomly from a

Gaussian distribution with mean
√
λ = 1 and standard

deviation of 0.1. Unless noted otherwise, all results are
averaged from ten different random initial conditions.

Fig. 1 shows some representative examples of fully
locked states (S1) on the complex plane after the sta-
tionary state is reached. These four states, which have
different combinations of phase and amplitude dynamics,
are all observable from model equation (1) in different pa-
rameter space. In Fig. 1(a), oscillators with larger cou-

pling strengths (bigger and brighter dots) phase-lead os-
cillators with lower amplitude, whereas in (b) those with
larger coupling strengths phase-lead with higher ampli-
tude. In (c), oscillators with smaller coupling strengths
(smaller and darker dots) phase-lead with lower ampli-
tude, while (d) shows the opposite dynamics in ampli-
tude. Drifting population is observable in other regions
of parameter space, as shown in subsequent sections.
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FIG. 1. Synchronization of limit-cycle oscillators with inho-
mogeneous coupling strengths distribution (Gaussian). The
amplitude and phase of each oscillator are represented ge-
ometrically on a complex plane. Color and size indicate
the respective coupling strength—oscillators with larger cou-
pling strengths are represented with bigger and brighter dots,
and those with smaller coupling strengths are represented
by smaller and darker dots. All oscillators are pulled to-
wards the collective mean field (red asterisk) proportion-
ately to each coupling strengths. The four states above
show the representative synchronization dynamics for fully
locked states. (a) Higher-degree nodes (with larger cou-
pling strengths) phase-leading with lower amplitudes. (b)
Higher-degree nodes phase-leading with higher amplitudes.
(c) Higher-degree nodes phase-lagging with higher ampli-
tudes. (d) Higher-degree nodes phase-lagging with lower am-
plitudes. Simulation parameters: λ = 1, ω = π, S = 12,
N = 1000. (Note that for this particular simulation, the
global coupling strength S was set to 12 for the purpose of
visualization; when S is larger, the amplitude difference is ex-
aggerated without a qualitative change in the dynamics; refer
to Fig. S1 for more details.)

A. Gaussian coupling strength distributions

First, we investigate the cases of Gaussian distribu-
tion for the coupling strength distributions with N =
1000 oscillators. The values for inhomogeneous coupling
strengths were randomly sampled from a Gaussian distri-
bution with a mean of 20×10−3 and a standard deviation
of 4.5 × 10−3. Figure 2(a) shows the distribution of the
obtained coupling strength set Kj .

When coupling strengths were exactly or nearly ho-
mogeneous, or when d0 sinα = sinβ, the Stuart-Landau
systems exhibited in-phase synchronous states. How-

ever, when coupling strengths were inhomogeneous and
d0 sinα 6= sinβ, the system did not exhibit in-phase syn-
chronous states.
Representative examples of partially locked states of

the system with the coupling strengths for various com-
binations of α, β, and d0 are presented in Figs. 2(b)-(f).

Using the R̃ and ∆ values obtained from the numerical
simulation, we identified the self-consistent theoretical
values of (Kj , φj

∗) and (Kj , rj
∗) from Eqs. (8) and (12).

These are plotted against Kj for the boundaries within
the locking ranges (unshaded region in Figs. 2(b)-(f)).
The analytically obtained values fit well with the simu-
lations. As predicted by Eq. (14), the signs of the slopes
of the (Kj , φj

∗) curve within the locking ranges are given
by the negative of the sign of ∆. Similarly, the signs of
the slopes of (Kj , rj

∗) curve are given by the sign of ∆
in combination with φj

∗ and β. In Fig. 2(e) and (f),
the inflection points in which the slope of the (Kj, rj

∗)
curve changes from positive to negative occurred when
φj

∗ − Φ+ β = 0 as predicted by Eq. (14).
In order to understand the effects of the three pa-

rameters α, β, and d0 on the system, we plotted the
phase diagrams by fixing α on a representative value,
while varying β and d0. In this way, we tested different
sign-combinations of the contribution from the constant
term d0e

−iα. For instance, at α = 0.5π the contribution
of the constant term in the phase dynamics is maximal
(d0 sinα = d0 in Eq. 2), but it has no effect on the am-
plitude dynamics (rjd0 cosα = 0 in Eq. 3). Conversely,
at α = 0, the d0e

−iα term affects only the amplitude
dimension of the oscillators. Using this reasoning, four
values of α at {0, 0.25π, 0.5π, 0.75π} were selected. Set-
ting α = 0.25π and α = 0.75π produces opposite-signed
contributions in the rjd0 cosα term in Eq. (3).
Fig.3 shows the phase diagrams for the system with

Gaussian coupling strength distributions. Each column
depicts the phase diagram for a fixed α value, displayed
with R̃, ∆, and the average slope of the (Kj , rj

∗) curve

from the simulations. R̃ indicates the degree of global
synchrony in the system, as used in Eq. (4): the more

locked oscillators in the system, the larger the R̃ values.
∆ gives the information about the slope of the (Kj, φj

∗)
as shown in Eq. (14). For example, larger magnitude of
∆ indicate that the spread of phases among the locked
oscillators is large, while the sign indicates whether high-

degree or low-degree nodes are phase-leading. 〈 ∂r∗j
∂Kj

〉
gives the information about the slope of the (Kj, rj

∗)

curve. If 〈 ∂r∗j
∂Kj

〉 < 0, it suggests that higher-degree nodes

are synchronized with lower amplitude at a stationary
state. The boundaries between regions for states were
determined from simulations of R̃ and ∆ values. More
details are provided in the caption of Fig. 3.
The phase diagram for α = 0 (Fig. 3.(a)) shows only

four states are obtainable in the oscillator system: S1l+ ,
S2l− , S2dl− , and S2d. This is the fewest number of states
observed for any value of α. Note that the values of R̃ and
∆ were nearly uniform across d0 and were only modu-
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FIG. 2. Examples of various synchronous states in the system with Gaussian coupling strength distribution. (a) Distribution
of coupling strengths randomly selected from a Gaussian distribution with a mean of 20 × 10−3 and a standard deviation
of 4.5 × 10−3. For the obtained coupling strength set Kj , Kmean = 20.2 × 10−3 (vertical dotted line), σK = 4.36 × 10−3,
Kmin = 7.85 × 10−3, and Kmax = 34.4 × 10−3. (b) State S1l+ with negative amplitude slope, where l stands for the locking

range of K: R̃ ≥ d0 sinα·max{rj
∗} and ∆ < 0. Oscillators are fully locked with |∆|rmin

∗

R̃+|d0 sinα|rmin
∗
< Kmin. Left axis represents φj

(in blue), and the right axis rj (in red). (c) State S2dl− with positive amplitude slope, where d stands for the drifting range of

K: R̃ ≥ |d0 sinα|max{rj
∗} and ∆ > 0. Oscillators with smaller coupling strengths drift with Kmin ≤ ∆·rmin

∗

R̃+|d0 sinα|rmin
∗
< Kmax.

(d) State S3l+d with negative amplitude slope: R̃ < d0 sinα ·min{rj
∗} and ∆ < 0. Oscillators with larger coupling strengths

drift with |∆|rmin
∗

R̃+|d0 sinα|rmin
∗
< Kmin and |∆|rmax

∗

|d0 sinα|rmax
∗−R̃

< Kmax. (e) State S3l+d with positive-negative amplitude slope. Same

additional conditions as in (d). (f) State S3dl+d with positive-negative amplitude slope: R̃ < d0 sinα · min{rj
∗} and ∆ < 0.

Kmin ≤ |∆|rmin
∗

R̃+|d0 sinα|rmin
∗
< Kl <

|∆|rmax
∗

|d0 sinα|rmax
∗−R̃

≤ Kmax, where Kl represents the coupling strength for the locked oscillators.

In the figures (b)-(f), solid lines are self-consistent theoretical curves for locked phases and amplitudes from Eqs. (8) and (12),
and unshaded range is for Kj values for locked subpopulations obtained theoretically from Eqs. (20) and (21). Simulation
parameters: λ = 1, ω = π, S = 1, N = 1000.

lated by the values of β, as indicated by Eq. (2). The ver-
tical bounding curves also indicate that different states
occurred only as a function of β for α = 0. Negative val-
ues of ∆, for which state S1l+ occurs, were obtained near
β = 0 (left of the red solid line). Further increases in the
phase delay term β produce increases in phase spread ∆
and decreases in the order parameter R̃, until the system

reaches an incoherent state (S2d) near β = π/2 (right
to the yellow dash-dotted line). The term, d0, which
describes the amplitude of the constant term applied to
the system, only affects the slope of the (Kj , rj

∗) curve:
for d0 > 1, the system can exhibit synchronous states
where, in the locked state, oscillators with larger cou-
pling strengths have lower amplitudes.
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FIG. 3. Phase diagrams with Gaussian coupling strength distribution as a function of α, β, and d0 determining the shape of
coupling function. Representative fixed values of α are chosen at (a) α = 0 where sinα = 0, cosα = 1, (b) α = 0.25π where
sinα > 0, cosα > 0, (c) α = 0.5π where sinα = 1, cosα = 0, and (d) α = 0.75π where sinα < 0, cosα > 0. Phase diagrams

with order parameter R̃ (first row), phase spread ∆ = ω−Ω (second row), and slope of the amplitude curve (Kj , rj
∗) calculated

as the average value of
∂r∗j
∂Kj

among the locked oscillators (third row). Regions with fully drifting population are marked in black.

For the amplitude slope, the parameter space in which inflection point exists in the (Kj , rj
∗) curve (from positive to negative

slope) is additionally marked with green dots. The boundaries are determined numerically from the model equation Eq. (1)
for a Gaussian distribution with (Kmean, σK ,Kmin,Kmax) = (20.2, 4.36, 7.85, 34.4) × 10−3. The bounding curves are obtained

for ∆ = 0 (solid red), R̃ = |d0 sinα|〈rj
∗〉 (dotted cyan), ∆rmin

∗

R̃−|d0 sinα|rmin
∗

= Kmin (dashed green), |∆|rmin
∗

R̃+|d0 sinα|rmin
∗

= Kmin

(long dashed magenta), |∆|rmax
∗

|d0 sinα|rmax
∗−R̃

= Kmax (dashed-dotted navy), ∆rmax
∗

R̃−|d0 sinα|rmax
∗

= Kmax (dashed-dotted yellow),

|∆|
√
λ

|d0 sinα|
√

λ−R̃
= Kmin (dashed-dotted grey, d0 ≥ 0), and ∆

√
λ

R̃+|d0 sinα|
√

λ
= Kmax (dashed-dotted grey, d0 < 0). Simulation

parameters: λ = 1, ω = π, S = 1, N = 1000.

With nonzero values of α, additional sub-states in S3
and S4 were observed (Fig. 3.(b)-(d)). Of particular
note, states in which oscillators with weaker coupling
strength are locked while those with stronger coupling
drift (e.g., S3l+d) were observed only at α 6= 0. Such
states are in contrast to our intuition that oscillators with
larger coupling strength are easier to be locked.

The diagrams for R̃ and ∆ (first and second row in
Figure 3) reveal a symmetry around α = 0.5π, such that
α = 0.25π and α = 0.75π are nearly identical. This is
as expected theoretically from the phase equation in Eq.
(2), as the values of sinα are symmetric around α = 0.5π.

This is not the case for cosα in Eq. (3), and as expected,
diagrams for the (Kj , rj

∗) slope (third row) differ qual-
itatively. Yet the effects of the difference in the ampli-
tude dynamics did not significantly influence the global
synchrony of the system. This was so because coupling
strengths Kj normalized by N result in a small over-
all coupling relative to the attraction to the limit cycle.
This observation also explains the near-identity between
the phase diagram for α = 0.5π (Fig. 3.(c)) with the
one observed for the phase-reduced system of the model
equation (1).16 At α = 0.5π, the coupled amplitude term
rjd0 cosα in Eq. (3) vanishes, and therefore the remain-
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FIG. 4. Examples of synchronous states in the system with Power-law coupling strength distribution (a) Distribution for
coupling strengths randomly selected from a power-law distribution with a mean of 20 × 10−3 and an exponent of 2. For
the obtained coupling strength set Kj , Kmean = 19.9 × 10−3 (vertical dotted line) , σK = 20.5 × 10−3, Kmin = 6.02 × 10−3,

and Kmax = 120.5 × 10−3. (b) State S2dl− with positive amplitude slope: R̃ > d0 sinα · max{rj
∗} and ∆ > 0. Satisfies

additional condition Kmin ≤ ∆·rmin
∗

R̃−|d0 sinα|rmin
∗
< Kmax. (c) State S3l+d with negative amplitude slope: R̃ < D0 and ∆ < 0.

Satisfies additional conditions |∆|rmin
∗

R̃+|d0 sinα|rmin
∗
< Kmin and |∆|rmax

∗

|d0 sinα|rmax
∗−R̃

< Kmax. (d) State S3l+d with positive amplitude

slope. Additional conditions are as in (c). Oscillators with larger coupling strengths drift with higher amplitudes. (e) State

S3dl+d with positive-negative amplitude slope, R̃ < d0 sinα · min{rj
∗} and ∆ < 0. Satisfies additional conditions Kmin ≤

|∆|rmin
∗

R̃+|d0 sinα|rmin
∗
< Kl <

|∆|rmax
∗

|d0 sinα|rmax
∗−R̃

≤ Kmax. (f) State S3dl+d with negative amplitude slope. Additional conditions are as

in (e). Other details are as in Fig. 2. Simulation parameters: λ = 1, ω = π, S = 1, N = 1000.

ing amplitude dynamics were insufficient to affect the
global synchrony of the system. (Note, however, that
with the increase in the global coupling strength S, the
difference in the amplitude dynamics is amplified; refer
to Fig. S1 for more details.)

B. Power-law coupling strength distributions

Next, we investigated a coupled Stuart-Landau sys-
tem in which the coupling strengths were distributed ac-

cording to a power-law distribution. We keep the same
number of oscillators (N = 1000). Fig. 4(a) shows the
coupling strengths distribution randomly sampled from
a a truncated power-law distribution P (x) ∼ x−γ0 with
γ0 = 2. Here, Kmin and Kmax were chosen such that
the mean value of the distribution matches that of the
Gaussian distributions used in the previous section.

Example observed states of the system are shown in
Figures 4(b)-(f). In contrast to the Gaussian coupling
strength cases, in the power-law case there were only
three types of partially locked states: S2dl− (Fig. 4(b)),
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FIG. 5. Phase diagrams with power-law coupling strength distribution as a function of α, β, and d0 determining the shape
of coupling function. Representative fixed values of α are chosen at (a) α = 0 where sinα = 0, cosα = 1, (b) α = 0.25π
where sinα > 0, cosα > 0, (c) α = 0.5π where sinα = 1, cosα = 0, and (d) α = 0.75π where sinα < 0, cosα > 0. Phase

diagrams with order parameter R̃ (first row), phase spread ∆ = ω−Ω (second row), and slope of the amplitude curve (Kj , rj
∗)

calculated as the average value of
∂r∗j
∂Kj

among the locked oscillators (third row). The boundaries and other details are as in

Fig. 3. The coupling strengths are randomly selected from a power-law distribution P (x) ∼ x−γ0 with γ0 = 2. γ̄ = 2.03
is the average exponent of distributions for the obtained coupling strength sets. For the obtained coupling strength set Kj ,
(Kmean, σK ,Kmin,Kmax) = (19.8, 20.2, 6.01, 122.7) × 10−3. Simulation parameters: λ = 1, ω = π, S = 1, N = 1000.

S3l+d (Fig. 4(c)-(d)), and S3dl+d (Fig. 4(e)-(f)). Par-
tially locked states S1dl+ and S3dl+ were not observed
from the simulations for the power-law distribution, as
seen in the phase diagrams in Fig. 5. The most no-
ticeable difference from the previous Gaussian case is
the overall decrease in the synchronous region, indicated
by the darker colored regions in the diagram for order
parameter R̃ (Fig. 5, top row). This suggests that in
general, it is more difficult to achieve global synchrony
for power-law distribution than for Gaussian distribution
given the same parameter space. Although the two dis-
tributions have the same mean coupling strength Kj, the
majority of oscillators in power-law distribution were as-
signed minimal coupling strength of Kj < 0.01. There-
fore, the majority of oscillators contribute a smaller pro-
portion of the total sum of coupling strengths in the
power-law degree distribution, relative to the Gaussian
degree distribution.

For nonzero cases of α (Fig. 5.(b)-(d)), we also notice

the absence of the regions for the partially locked states
S1dl+ and S3dl+ . However, a new partially locked state
S3dl−d was observed along the more negative values of
d0. In this state, only few oscillators with intermediate
coupling strengths are locked. This is reflected in the
lower values of R̃ for the S3dl−d region.

The phase diagram at α = 0 (Fig. 5.(a)) shows the
same pattern as with the previous section, where only
β affects the values of R̃ and ∆. The major difference
is that incoherent states are reached for lower values
of β. However, the parameter region for fully drift-
ing populations (S2d) is smaller compared to the the
Gaussian distributed couplings. This is reflected by the
larger Kmax value for the power-law coupling strength
set, as the condition for S2d requires Kmax ≤ ∆·rmax

∗

R̃
at

α = 0. Likewise, the smaller Kmin value for the power-
law coupling strength compared to the Gaussian case re-
sults in a decreased area for S1l+ region, which requires
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FIG. 6. Examples of various synchronous states in the system with human brain network coupling strength distribution. (a)
Distribution for coupling strengths obtained from a brain network distribution. For the obtained coupling strength set Kj ,
Kmean = 36.5 × 10−3 (vertical dotted line), σK = 15.8 × 10−3, Kmin = 1.01 × 10−3, and Kmax = 98.1 × 10−3. (b) State S2dl−
with positive amplitude slope: R̃ > d0 sinα · max{rj

∗} and ∆ > 0. Satisfies additional condition Kmin ≤ ∆·rmin
∗

R̃−|d0 sinα|rmin
∗
<

Kmax. (c) State S3dl+d with positive amplitude slope: R̃ < d0 sinα · min{rj
∗} and ∆ < 0. Satisfies additional conditions

Kmin ≤ |∆|rmin
∗

R̃+|d0 sinα|rmin
∗

< Kl <
|∆|rmax

∗

|d0 sinα|rmax
∗−R̃

≤ Kmax. (d) State S3dl+d with negative amplitude slope. Additional

conditions are as in (c). (e) State S3dl−d with positive-negative amplitude slope: R̃ < d0 sinα ·min{rj
∗} and ∆ > 0. Satisfies

additional conditions Kmin ≤ |∆|rmin
∗

R̃+|d0 sinα|rmin
∗

< Kl <
|∆|rmax

∗

|R̃−|d0 sinα|rmax
∗| ≤ Kmax. (f) State S3dl−d with negative amplitude

slope. Additional conditions are as in (e). Other details are as in Fig. 2. Simulation parameters: λ = 1, ω = π, S = 1,
N = 989.

|∆|rmin
∗

R̃
< Kmin. Negative values of ∆ were obtained

only at β = 0.

C. Brain network coupling strength distributions

As an example model application to the real-world
complex network, we now investigate oscillator systems
in which the coupling strength approximates that of the
couplings between regions of the human cerebral cor-
tex. The distribution was derived from the network with

998 cortical regions58, where the coupling strength corre-
sponds to the degree of each node in the network normal-
ized by the total number of regions. Fig. 6(a) shows the
resulting coupling strength set Kj with N = 989, after
removing nodes with zero in-degree.

Fig. 7 shows that the regions with fully locked popula-
tion (S1l+ and S2l−) are significantly reduced, suggest-
ing that fully locked states are practically non-existent
in the system with brain network distribution. This phe-
nomenon is accounted by the near-zero minimum cou-
pling strength (Kmin = 1.01 × 10−3) in the given net-
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FIG. 7. Phase diagram with human brain network coupling strength distribution as a function of α, β, and d0 determining the
form of coupling function. Representative fixed values of α are chosen at (a) α = 0 where sinα = 0, cosα = 1, (b) α = 0.25π
where sinα > 0, cosα > 0, (c) α = 0.5π where sinα = 1, cosα = 0, and (d) α = 0.75π where sinα < 0, cosα > 0. Phase

diagrams with order parameter R̃ (first row), phase pread ∆ = ω−Ω (second row), and slope of the amplitude curve (Kj , rj
∗)

calculated as the average value of
∂r∗j
∂Kj

among the locked oscillators (third row). The boundaries and other details are as in

Fig. 3. For the obtained coupling strength set Kj with N = 989, (Kmean, σK ,Kmin, Kmax) = (36.5, 15.8, 1.01, 98.1) × 10−3.
Simulation parameters: λ = 1, ω = π, S = 1, N = 989.

work, compared to Gaussian and power-law distribu-
tion: with small values of Kmin, the parameter space

with
|∆|r∗j
R̃+D0

< Kmin (for S1l+) or with
∆r∗j

R̃±D0

< Kmin

(for S2l−) decreases. Accordingly, the most commonly
observed state in the phase diagrams was the partially

locked state S2dl− (satisfying Kmin ≤ ∆r∗j

R̃±D0

with posi-

tive value of ∆).

Overall, we notice that the shape of phase diagrams
for the brain network distribution is qualitatively in be-
tween the shapes derived for Gaussian and power-law dis-
tributions. The diagrams for R̃ (Fig. 7, top row) show
that the synchronous region is smaller than for the Gaus-
sian case (Fig. 3) but larger than for the power-law case
(Fig. 5). The coupling strength distribution derived from
large-scale brain networks (Fig. 6(a)) also reflects the
intermediate property between Gaussian and power-law
distributions, as the majority of oscillators are skewed

slightly left to Kmean = 0.0365 and right to Kmin. (For
Gaussian distribution, the majority of coupling strengths
are centered around its Kmean; for power-law distribu-
tion, around its Kmin).

IV. SIMULATION RESULTS WITH FULL COMPLEX

NETWORKS CONNECTIVITY

The previous sections examined a mean-field model
with the inhomogeneous coupling strength set Kj. In
this section, we compare the simulation results of the
coupled oscillator system on a full complex network. In
the simulations, we retain the full connectivity profile,
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FIG. 8. Phase diagrams of complex networks using full connectivity matrices at α = 0.5π. α, β, and d0 determining the form
of coupling function. Phase diagrams at the representative fixed value of α = 0.5π are shown for (a) random network following
Gaussian degree distribution, (b) random network following power-law degree distribution, (c) random network following brain
network degree distribution, and (d) brain network with empirical connectivity profile. Model dynamics are shown for order

parameter R̃ (first row), ∆ = ω−Ω (second row), and slope of the (Kj , rj
∗) curve calculated as the average value of

∂r∗j
∂Kj

among

the locked oscillators (third row). In the third row, regions with fully drifting population are marked in black. The parameter
space in which inflection point exists in the (Kj , rj

∗) curve (from positive to negative slope) is additionally marked with green
dots. Simulation parameters: λ = 1, ω = π, S = 1, N = 1000 (Gaussian & Power-law) or N = 989 (Brain networks).

and so the simulated model is described by

żj = {λj − |zj|2 + iωj}zj +
S

N

N
∑

k=1

Ajk(zke
−iβ − zjd0e

−iα),

j = 1, 2, ..., N, α ∈ [0, π), β ∈ [0, π/2), d0 ∈ R,

(22)

where Ajk is the adjacency matrix describing the topol-
ogy of the network. If k influences j, we take Ajk = 1
and Ajk = 0 otherwise. With sufficiently large N , we can
use the following mean-field approximation as in Ref. 53:

N
∑

k=1

AjkH(z) ≈ kj
N

N
∑

k=1

H(z), (23)

where kj is the degree of oscillator j andH is the coupling
function. Then, as an approximation of the model in Eq.

(22), we can write

żj = {λj − |zj |2 + iωj}zj +
Skj
N2

N
∑

k=1

(zke
−iβ − zjd0e

−iα),

(24)

which is equivalent to Eq. (1) with Kj =
kj

N
. Thus

the network characteristics are incorporated through the
coupling inhomogeneity in Kj, a quantity directly pro-
portional to the degree kj . Eq. (1) is an approximation
of Eq. (22) in the sense that the former treats the con-
nections between nodes as all-to-all but normalize the ef-
fect to each node by its respective degree; hence it leaves
out the topological information contained in Ajk. Yet
such a mean-field method renders the system analytically
tractable and amenable to numerical simulation, allowing
for the kind of analysis that we have seen in the previous
section. Thus, in this section we check whether the mean-
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FIG. 9. Representative brain states, simulated from the model with full connectivity matrix (without mean-field approximation).
(a) Brain states in which higher degree regions tend to phase-lead with lower amplitudes. (α, β, d0) = (0.25π, 0.22π, 1.35). (b)
Higher degree regions phase-lead with higher amplitudes. (α, β, d0) = (0.25π, 0.21π, 1.3). (c) Higher degree regions phase-lag
with lower amplitudes. (α, β, d0) = (0.1π, 0.2π, 1.3). (d) Higher degree regions phase-lag with higher amplitudes. (α, β, d0) =
(0π, 0.1π, 1.0). Simulation parameters: λ = 1, ω = π, S = 1, N = 989.

field approximation qualitatively captures the dynamics
obtained on the complex network topology.

We simulate Eq. (22) with the complex networks inves-
tigated in the previous sections. Four networks were gen-
erated as follows, using the network generation algorithm
provided in Ref. 59. First, N = 1000 random positive
integers kj were selected from the Gaussian distribution
with mean 20 and a standard deviation of 4.5. Note that
this is the same distribution used in the previous section
(before deviding each kj by N). The randomly selected
integers were bounded by [kmin = 8, kmax = 34], which
were determined by rounding Kmin ∗ N and Kmax ∗ N
to the nearest integer, respectively. After the degree set
was generated, each oscillator j was randomly assigned
kj neighbors without self-coupling, in such a way that
the network is bidirectional. Second, using the same
method, the power-law distribution with mean 20 was
used to generate a full network of size N = 1000 with
[kmin = 6, kmax = 121]. Lastly for the brain network, we
use the provided brain network which retains the empir-
ical connection data between brain regions. As with the
previous section, nodes with zero in-degrees were omit-
ted from the network. The resulting brain-derived graph
contained N = 989 nodes.

However, given the assumption of mean-field approxi-
mation which posits all-to-all connection (before normal-
ization by degree), we expect that the unique connectiv-
ity profile of the empirical human brain network would

not be incorporated. For this we reason we add another
network following brain network degree distributions, but
one in which the edges are randomized. This network was
generated following the same method as above, where
N = 989 random integers were selected from the degree
distribution set bounded by [kmin = 1, kmax = 97].

For simplicity in presentation, we look at the phase di-
agrams for model equation (1) in the parameter space of
α = 0.5π only. Fig. 8 shows the simulation results for
each given network. In the analogous figures from pre-
vious sections of this manuscript, we were able to mark
the state boundaries; however, this was not possible for
Figure because Eq. (22) does not allow for the ready
classification of states as was possible for Eq. (20)-(21).

Comparing the results in Fig. 8(a),(b) with those of
the mean-field approximation in Fig.3(c), 5(c), respec-
tively, we see that the phase diagrams show good agree-
ment. For the case of brain-network-derived distribution
seen in Fig 7(c), we note that the results show better
agreement with the brain network with randomized edges
(Fig. 8(c)) than with the empirical brain network (Fig.
8(d)) as expected.

The empirical implication of Eq. (1) is that, in prin-
ciple, various combinations of phase and amplitude dy-
namics are possible. Fig. 9 shows example brain states
visualized on the human cortical network, showing the
same four combinations of increasing/decreasing ampli-
tude and phase dynamics as in Fig. 1. For example,
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the state represented in Fig. 9(c) in which higher-degree
regions phase-lag the rest of the network, while main-
taining larger amplitudes, was empirically observed by
Ref. 28. In that work, it was shown that human sub-
jects in eyes-closed resting states exhibit such behavior
when time averaged over period of minutes in their EEG
recording, as opposed to anesthetized unconscious state
where the pattern disappears. Note that the parameter
β plays the role of time delays between neuronal regions;
we estimate that the values will be around 0.1 - 0.2 in re-
alistic brain simulations, in which each node is a cortical
region.28 In future, it may also be possible to empirically
estimate the parameter d0 by measuring changes in the
peak-to-trough variation in neural oscillations.

V. CONCLUSIONS

This study combined analytical and numerical meth-
ods to characterize the dynamics of coupled oscillators
with both phase and amplitude dynamics. In partic-
ular, we set out to understand whether phase-locking
occurred, and which nodes were leading and lagging in
phase, depending on the form and strength of inter-node
couplings. Using a mean-field model, we analytically
mapped the effects of coupling strength inhomogeneity
and the coupling functions, and documented the param-
eter regimes associated with phase-locked (synchronous
and asynchronous), partially locked (e.g. partially drift-
ing) and fully drifting states. The analytic results agreed
with numerical simulations employing Gaussian distribu-
tions and power-law distributions for coupling strengths.
In addition, we applied the model to understanding neu-
ral phase-lead and phase-lag relationships, by simulating
and analyzing the model in the case where the node de-
grees are derived from empirical properties of cortical
networks.
These results will deepen the understanding of collec-

tive dynamics in complex systems.In particular, we de-
termined conditions under which high-degree nodes can
phase-lead or phase-lag the rest of the network, both
when they have relatively higher amplitude and when
they have lower amplitude. Furthermore, we showed that
the high-degree nodes can have higher or lower ampli-
tudes, regardless of whether they phase-lead or phase-
lag the rest of the network. As a result, the system can
exhibit four representative patterns as shown in Fig. 9.
This finding is of particular significance in the model-
ing of neural systems, in which patterns of phase-leading
and lagging along with the amplitude variations are as-
sociated with the control of information flow.28,60,61

Future studies could study the transient behavior of
the model in the dynamics leading to the steady state,
as the dynamics between stable states are important in
complex real-world systems, such as brain dynamics.62,63

For practical applications, it may also be useful to de-
velop methods to identify, moment by moment, which
sub-state within the phase-space (Figures 3, 5, 7) are oc-

cupied by real-world dynamical systems.

SUPPLEMENTARY MATERIALS

We have Fig. S1-S3 to supplement our results. In
Fig. S1, we compare the model behavior as a function of
global coupling strength S and the distribution of Kj . In
Fig. S2-S3, , we run additional simulations of the model
equations on a brain network with smaller number of
nodes and show the results.
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